Publication


Mahieu, et al.
Recent Northern Hemisphere stratospheric HCl increase due to atmospheric circulation changes
Nature, 515(7525), 104-107, 2014; doi: 10.1038/nature13857
HCl
URL, PDF, RIS, BibTex

Abstract


The abundance of chlorine in the Earth’s atmosphere increased considerably during the 1970s to 1990s, following large emissions of anthropogenic long-lived chlorine-containing source gases, notably the chlorofluorocarbons. The chemical inertness of chlorofluorocarbons allows their transport and mixing throughout the troposphere on a global scale1, before they reach the stratosphere where they release chlorine atoms that cause ozone depletion2. The large ozone loss over Antarctica3 was the key observation that stimulated the definition and signing in 1987 of the Montreal Protocol, an international treaty establishing a schedule to reduce the production of the major chlorine- and bromine-containing halocarbons. Owing to its implementation, the near-surface total chlorine concentration showed a maximum in 1993, followed by a decrease of half a per cent to one per cent per year4, in line with expectations. Remote-sensing data have revealed a peak in stratospheric chlorine after 19965, then a decrease of close to one per cent per year6, 7, in agreement with the surface observations of the chlorine source gases and model calculations7. Here we present ground-based and satellite data that show a recent and significant increase, at the 2σ level, in hydrogen chloride (HCl), the main stratospheric chlorine reservoir, starting around 2007 in the lower stratosphere of the Northern Hemisphere, in contrast with the ongoing monotonic decrease of near-surface source gases. Using model simulations, we attribute this trend anomaly to a slowdown in the Northern Hemisphere atmospheric circulation, occurring over several consecutive years, transporting more aged air to the lower stratosphere, and characterized by a larger relative conversion of source gases to HCl. This short-term dynamical variability will also affect other stratospheric tracers and needs to be accounted for when studying the evolution of the stratospheric ozone layer.

Reference


@article{Mahieu2014b,
  author = "Mahieu and E. and Chipperfield and M. P. and Notholt and J. and Reddmann and T. and Anderson and J. and Bernath and P. F. and Blumenstock and T. and Coffey and M. T. and Dhomse and S. S. and Feng and W. and Franco and B. and Froidevaux and L. and Griffith and D. W. T. and Hannigan and J. W. and Hase and F. and Hossaini and R. and Jones and N. B. and Morino and I. and Murata and I. and Nakajima and H. and Palm and M. and Paton-Walsh and C. and III and J. M. Russell and Schneider and M. and Servais and C. and Smale and D. and Walker and K. A.",
  title = "Recent Northern Hemisphere stratospheric HCl increase due to atmospheric circulation changes",
  year = 2014,
  journal = "Nature",
  publisher = "Nature Publishing Group, a division of Macmillan Publishers Limited",
  volume = 515,
  number = 7525,
  pages = "104-107",
  month = "Nov",
  keywords = "HCl",
  doi = "10.1038/nature13857",
  url = "http://dx.doi.org/10.1038/nature13857"
}
Site Navigation Publication index Dataplots