Journal Articles by J.-U. Grooß


S. Johansson, et al.
Unusual chlorine partitioning in the 2015/16 Arctic winter lowermost stratosphere: observations and simulations
Atmospheric Chemistry and Physics, 19(12), 8311-8338, 2019; doi: 10.5194/acp-19-8311-2019
URL, PDF, RIS, BibTex
T. Jurkat, et al.
Depletion of ozone and reservoir species of chlorine and nitrogen oxide in the lower Antarctic polar vortex measured from aircraft
Geophysical Research Letters, 44(12), 6440-6449, 2017; doi: 10.1002/2017GL073270
middle atmosphere Antarctic polar vortex HCl ClONO2 HNO3 Cly O3 N2O HALO
URL, PDF, RIS, BibTex
M. Tao, et al.
Impact of the 2009 major sudden stratospheric warming on the composition of the stratosphere
Atmospheric Chemistry and Physics, 15(15), 8695-8715, 2015; doi: 10.5194/acp-15-8695-2015
O3 18OO2 O18OO O17OO N2O N218O N217O 15NNO N15NO
URL, PDF, RIS, BibTex
J.-U. Grooß, et al.
Nitric acid trihydrate nucleation and denitrification in the Arctic stratosphere
Atmospheric Chemistry and Physics, 14(2), 1055-1073, 2014; doi: 10.5194/acp-14-1055-2014
NO NO2 HNO3 N2O5 HO2NO2 CH3C(O)OONO2
URL, PDF, RIS, BibTex
C. Kalicinsky, et al.
Observations of filamentary structures near the vortex edge in the Arctic winter lower stratosphere
Atmospheric Chemistry and Physics, 13(21), 10859-10871, 2013; doi: 10.5194/acp-13-10859-2013
HCl
URL, PDF, RIS, BibTex
M. von Hobe, et al.
Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions (RECONCILE): activities and results
Atmospheric Chemistry and Physics, 13(18), 9233-9268, 2013; doi: 10.5194/acp-13-9233-2013
O3 18OO2 O18OO O17OO
URL, PDF, RIS, BibTex
T. Wegner, et al.
Heterogeneous chlorine activation on stratospheric aerosols and clouds in the Arctic polar vortex
Atmospheric Chemistry and Physics, 12(22), 11095-11106, 2012; doi: 10.5194/acp-12-11095-2012
CH4 13CH4 CH3D HNO3 HCl ClONO2
URL, PDF, RIS, BibTex
J.-U. Grooß, et al.
Stratospheric ozone chemistry in the Antarctic: what determines the lowest ozone values reached and their recovery?
Atmospheric Chemistry and Physics, 11(23), 12217-12226, 2011; doi: 10.5194/acp-11-12217-2011
ClONO2 HCl HNO3
URL, PDF, RIS, BibTex
J.-U. Grooß, et al.
Do cosmic-ray-driven electron-induced reactions impact stratospheric ozone depletion and global climate change?
Atmospheric Environment, 45(20), 3508-3514, 2011; doi: http://dx.doi.org/10.1016/j.atmosenv.2011.03.059,
Dissociative electron attachment CH4 13CH4 CH3D N2O CCl2F2 N15NO 15NNO N217O N218O
URL, PDF, RIS, BibTex
M. von Hobe, et al.
Evidence for heterogeneous chlorine activation in the tropical UTLS
Atmospheric Chemistry and Physics, 11(1), 241-256, 2011; doi: 10.5194/acp-11-241-2011
O3 18OO2 O18OO O17OO HCl
URL, PDF, RIS, BibTex
R. Pommrich, et al.
What causes the irregular cycle of the atmospheric tape recorder signal in HCN?
Geophysical Research Letters, 37(16), L16805, 2010; doi: 10.1029/2010GL044056
HCN Middle atmosphere Troposphere atmospheric tape recorder cyanic hydrogen Indonesia UTLS tropical
URL, PDF, RIS, BibTex
R. Müller, et al.
Does Cosmic-Ray-Induced Heterogeneous Chemistry Influence Stratospheric Polar Ozone Loss?
Physical Review Letters, 103, 228501, 2009; doi: 10.1103/PhysRevLett.103.228501
N2O 15NNO N217O N218O N15NO CCl2F2
URL, PDF, RIS, BibTex
B. Vogel, et al.
Model simulations of stratospheric ozone loss caused by enhanced mesospheric NOx during Arctic Winter 2003/2004
Atmospheric Chemistry and Physics, 8(17), 5279-5293, 2008; doi: 10.5194/acp-8-5279-2008
O3 18OO2 O18OO O17OO NO2 NO
URL, PDF, RIS, BibTex
J.-U. Grooß, et al.
Simulation of ozone loss in Arctic winter 2004/2005
Geophysical Research Letters, 34(5), L05804, 2007; doi: 10.1029/2006GL028901
O3 18OO2 O18OO O17OO Middle atmosphere Atmosphere Middle atmosphere dynamics Polar meteorology ozone loss CLaMS polar vortex
URL, PDF, RIS, BibTex
Site Navigation Publication index Dataplots