
1.  Introduction
Understanding global emissions of long-lived trace gases requires careful interpretation of in situ meas-
urements. Emissions can be inferred from observed changes in atmospheric mole fractions along with an 
assumed atmospheric lifetime (WMO, 2003, 2018). However, sparse networks of in situ trace gas measure-
ments together with large uncertainties in atmospheric lifetimes (Ko et al., 2013) can lead to large uncer-
tainties in inferred emissions (Lickley, 2021). Experts have long looked to hemispheric differences in mole 
fractions of these chemicals as evidence to support conclusions about changes in anthropogenic emissions 
(Lovelock et al., 1973). However, recent work illustrates the importance of stratosphere - troposphere flux-
es in driving anomalies of in situ trace gas measurements (Laube et al., 2020; Nevison et al., 2011; Ray 
et al., 2020; Ruiz et al., 2021). Ray et al. (2020) use modeling experiments to show that observed anomalies 
in North-South hemisphere differences (NH-SH) in CFC-11, CFC-12, and N2O tropospheric mole fractions 
are associated with stratospheric anomalies driven by the Quasi Biennial Oscillation (QBO). This associa-
tion has yet to be validated or quantified with stratospheric measurements, limiting our ability to interpret 
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short-term (i.e., year-long timescales) observed tropospheric NH-SH anomalies of these trace gases. Montz-
ka et al. (2018), for example, pointed to positive NH-SH anomalies of CFC-11 after 2012 as evidence sup-
porting unexpected CFC-11 emissions, while recognizing the potential for some stratospheric contribution.

Atmospheric sources of CFCs and N2O are well documented (Prather et al., 2001, 2015). Their sources come 
from the surface through anthropogenic emissions and in the case of N2O also through natural contribu-
tion (Prather et al., 2001, 2015), while destruction of these gases largely occurs in the tropical stratosphere 
through photolytic reactions (Douglass et al., 2008; Minschwaner et al., 2013). Destruction of these trace 
gases occurs in the stratosphere, and the Brewer Dobson circulation (Brewer, 1949; Dobson, 1956) trans-
ports air depleted in these trace gases into the troposphere at mid-to high latitudes. Mass transport across 
the extra-tropical tropopause varies with the annual cycle, with maximum descent occurring in each hem-
isphere’s midwinter (Rosenlof, 1995) and NH late spring (Appenzeller et al., 1996). On interannual times-
cales, variability of mass flux across the tropopause is associated with the QBO, with enhanced meridional 
circulations, and thus enhanced downwelling in mid-to high latitudes, coinciding with the easterly phase 
of the QBO (see Baldwin et al. [2001] and references therein). Therefore, a contribution to interannual trop-
ospheric trace gas anomalies due to stratospheric processes can be expected (as shown in Ray et al. [2020]).

While ongoing ground-level measurements of trace gases have been available for several decades, con-
tinuous stratospheric measurements of trace gases have only recently been made available through satel-
lite-based monitoring experiments. In 2004, the Atmospheric Chemistry Experiment (ACE) satellite began 
measuring the atmospheric abundances of a range of trace gases (Bernath, 2017). Previous satellite mis-
sions measuring stratospheric trace gases have either ended within 10 years of their launch date (e.g., the 
Michelson Interferometer for Passive Atmospheric Sounding spectrometer on the Envisat mission; Fischer 
et al., 2008), or provide total column measurements of trace gases, rather than vertically resolved measure-
ments (e.g., the Infrared Atmospheric Sounding Interferometer on MetOp-A; Hilton et al., 2012). The ACE 
satellite is now in its seventeenth year of operation, allowing for the novel quantification of the influence 
of stratospheric anomalies on tropospheric surface measurements for nearly two decades. This will aide in 
forecasting dynamically driven surface level anomalies months in advance. Another strength of the ACE 
instrument is its simultaneous observations of several trace gases.

In this paper we use regression analysis to relate stratospheric anomalies of CFC-11, CFC-12, and N2O to 
tropospheric NH-SH anomalies using both a chemistry-climate model and observations. We first present 
results from a free-running ocean-atmosphere10-member ensemble of simulations from the Whole Atmos-
pheric Chemistry Climate Model (WACCM). The model is nudged to a climatological averaged QBO to 
obtain repeatable QBO signatures. We use leave-one-out cross validation to test the suitability of regres-
sion modeling for predictive purposes using the suite of WACCM ensemble members. We then apply the 
predictive model to observations taken from ACE satellite stratospheric measurements together with the 
Advanced Global Atmospheric Gases Experiment (AGAGE) ground-level measurements. We show that our 
approach can quantify the amount of tropospheric variability in NH-SH tracer growth rates attributed to 
stratospheric variability, and we make a prediction for expected tropospheric NH-SH anomalies in 2021 in 
the absence of other sources and sinks.

2.  Methods
2.1.  Deriving the Predictive Model

To derive the parameters in the predictive model, we apply ordinary least squares to annual growth rates of 
our input variables to estimate   as follows;

   
 

 
strat,y lag, , d NH

,trop y trop y
y

d NH SH

dt dt
� (1)

where the dependent variable,  , , /trop y trop yd NH SH dt, is the linearly detrended annual growth rates of 

the NH-SH gradient in the troposphere. The explanatory variable,  strat,y lagd NH / ,dt  is the linearly de-
trended annual growth rates of the NH stratospheric mole fractions. We selected the NH as our explanatory 
variable (and did not include the SH) as the NH was shown to have higher correlations with surface level 
NH-SH values both in observations and WACCM.   and optimal lags between stratosphere and troposphere 
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are estimated separately for each of the ensemble members to achieve a sample mean and uncertainty of the 
model parameters; y  denotes error and is assumed to be normally distributed. Each hemispheric concentra-
tion average is computed taking the area weighted mean from 50° polewards. We tested various latitudinal 
extents for calculating hemispheric averages; extending to lower latitudes (e.g., 30° polewards) resulted in 
excessive smoothing of anomalies in lower altitudes while using higher latitudes (e.g., 70° polewards) led 
to seasonal gaps in ACE satellite data. Our choice of 50° polewards was a compromise between these two 
issues (see Figure S1). We note that the latitudes with the greatest impact on NH-SH need not occur where 
the largest absolute downward fluxes may occur, but are more likely to reflect where the difference between 
hemispheres maximizes. To compute the explanatory variable, strat,y lagdNH / ,dt  we determine the height 
in the stratosphere where observed yearly NH growth rate anomalies are most strongly correlated with the 
surface level NH-SH growth rate anomalies. This occurs at ∼21 km as shown in Figures 2 and S2 for CFC-11 
(similar results for CFC-12 and N2O in Figures S8 and S9). The dependent variable is then computed using 
the modeled NH-SH difference at 8 km; surface mole fractions in WACCM are prescribed, therefore, NH-SH 
calculated at the surface would not reflect stratospheric transport. For each of the 10 ensemble members, 
we determine the initial lag times between 0 and 24 months that achieve the highest correlation between 
the explanatory and dependent variable, which is ∼11 ± 3 months. This means that it takes approximately 
11 months for NH stratospheric anomalies to be observed in tropospheric NH-SH values.

One of the challenges in computing an unbiased estimator for   is that stratosphere–troposphere lag times 
vary over the time period of the simulation, with some years having faster stratosphere-troposphere ex-
change than others. This means anomalies between the stratosphere and troposphere do not always align 
at the same lagged interval. Varying lag times would also lead to a conservative estimate of correlations be-
tween the stratosphere and troposphere. Therefore, before computing  , we perform dynamic time warping 
(DTW) on the two timeseries to better align the anomalies in the regression analysis. DTW is an algorithm 
that allows comparison of two time series with varying speeds (Berndt & Clifford, 1994). The algorithm 
requires that the first and last elements in each time series align, and that mapping of elements from the 
initial timeseries to the adjusted timeseries occur monotonically in time. The algorithm searches for the 
optimal adjustment in the time variable to minimize the differences between the two timeseries. We add an 
additional constraint that adjustments of the initial lag cannot be larger than 3 months in either direction. 
An illustrative example of DTW is included in Figure S3. We only use model years from 2000 to 2025 in our 
regression analysis so that the coefficients are not affected by earlier years with high variability in modeled 
CFC emissions. After these lags are computed and imposed on the data, we compute   for each ensemble 
member. Our estimated predictive model parameters,   and lags, are shown in Table 1.

2.2.  Model Validation

We test the WACCM-derived predictive model with a leave-one-out cross-validation (LOOCV) approach, 
wherein we derive the mean lag and   values from nine of the ensemble members and test its predictive 
power on the remaining ensemble member. Using LOOCV, R-squared and Root Mean Squared Error values 
of the predictive model using DTW are compared to a predictive model without a dynamically adjusted time 
series (noDTW). Results from LOOCV for CFC-11 are shown in Figure 1. Results for CFC-12 and N2O are 
shown in Figures S4 and S5. The DTW model achieves an R-squared of 0.66 ± 0.13 for CFC-11 compared 
to 0.62 ± 0.11 for the noDTW model. Comparable R-squared values are achieved for CFC-12 and N2O (see 
Table 1). As an example of the accuracy of the predictive mode, we show the leave-one-out prediction ver-
sus the simulated tropospheric NH-SH values in Figure 1d. For this member, the left-out sample (ensemble 
member 10) is within the 95% CI of the prediction throughout 78% of the time period. In other words, it falls 
outside of the 95% CI 22% of the time. The analogous predictions for all 10 members are shown in Figure S6.

2.3.  Applying the Model to Observations

To apply the predictive model to observations of CFC-11, CFC-12, and N2O, we follow the same approach 
for observations in computing the explanatory and dependent variables. As for the WACCM model output, 
both the explanatory and dependent variables are linearly detrended. We apply the mean of our sampled 
  parameters (shown in Table 1) and compute optimal lags between observed explanatory and dependent 
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variables. Uncertainties in predictions are estimated by sampling from the ensemble-derived   and lag 
parameters with N = 1,000.

3.  Data
Satellite-based measurements come from the Atmospheric Chemistry Experiment (ACE) satellite mission 
(Bernath, 2017). Data are in the form of zonal averages (5° wide bands), at a 1 km vertical resolution, and 
are binned by season (March–May, June–August, September–November, December–February). Data are 
available from pole to pole, from March 2004 to August 2020, and from an altitude of 5.5–28.5 km (for CFC-
11) to 35.5 km (for CFC-12) and to 95.5 km (for N2O). Trace gas observations from the lower troposphere 
come from the AGAGE monitoring network (see Supporting Information; Prinn et al., 2018). To fill gaps 
during periods of instrumental down-time, monthly means are extracted from the AGAGE 12-box model, 
into which the AGAGE data has been assimilated (Rigby et al., 2013). Similar to Montzka et al. (2018) and 
Rigby et al. (2019), a least-squares inverse method is employed in which emissions are estimated using the 
data and the model without a prior constraint. The model is constrained by monthly mean baseline-fil-
tered observations from January 1978 to December 2019, binned into semi-hemispheres (90°–30°S, 30°S–eq, 
eq–30°N, 30°–90°N, see Text S1 for details).

The predictive model is derived using a 10-member ensemble of simulations from a fully coupled atmos-
phere-ocean version of WACCM version 4 (Stone et al., 2018, 2020). The ensemble simulations are run from 
1995 to 2025 following the CCMI REF-C2 scenario definition (Morgenstern et al., 2017). These simulations 
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Figure 1.  Leave-one-out cross-validation (LOOCV) for CFC-11 using the 10-member ensemble from WACCM. Regression parameters are calculated for 
nine of the ensemble members, and the mean of the parameters are applied to the remaining ensemble member’s NH stratospheric detrended growth rates 
to provide a NH-SH tropospheric growth rate prediction. This is repeated for each ensemble members. (a) Boxplots of the 10 R-squared values from LOOCV, 
representing the fraction of NH-SH growth rate variability that can be explained by the predictive model. Results are shown for the dynamically time warped 
model (DTW) and the model without DTW (noDTW). Boxes indicate the interquartile range, red lines indicate median values and whiskers extend to the most 
extreme values within 1.5 times the interquartile range from the edge of the box. The red cross indicates outliers beyond the whisker lengths. (b) Boxplots of the 
root mean squared error (RMSE) using LOOCV. Results show box plots for RMSE for the DTW model, the noDTW model and standard deviations of observed 
tropospheric NH-SH detrended growth rates for comparison. (c) Yearly growth rate observations versus LOOCV predictions for the DTW model. A 1-1 line is 
provided for comparison (black). (d) Ensemble member 10s LOOCV predicted (blue) versus simulated (black) tropospheric NH-SH growth rate. The solid blue 
line is the median predicted value and the shaded region indicates the 95% CI.
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have a repeated cyclic 28-months QBO, no 11-years solar cycle or solar energetic particle events. Initial-
ization of the ensembles follows the approach in Solomon et al.  (2017). In this scenario, mole fractions 
of ozone depleting substances follow the WMO (2011) A1 scenario (Daniel et al., 2011) and are based on 
observations from a variety of sources, including AGAGE, through 2009 (see Table 1.1 in WMO (2011) for 
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Figure 2.  Observed CFC-11 concentration anomalies and correlations with surface measurements. (a) ACE derived North-South (NH-SH) CFC-11 anomalies, 
poleward of 50°. (b) Correlation coefficient between AGAGE surface NH-SH anomalies and ACE Northern Hemisphere anomalies (NH) poleward of 50°. (c) 
As in (b) but for the Southern Hemisphere (SH). (d) As in (b) but for NH-SH. Both ACE and AGAGE are de-seasonalized and detrended relative to a piece-wise 
linear trend, with a breakpoint occurring at 2012 (see main text).

CFC-11 CFC-12 N2O

Model parameters

β 0.036 ± 0.007 0.013 ± 0.002 0.012 ± 0.004

Lag (months) 10.9 ± 2.8 11.7 ± 2.6 11.6 ± 2.6

Leave-one-out cross validation
2R  (DTW) 0.66 ± 0.13 0.72 ± 0.10 0.71 ± 0.10

2R  (noDTW) 0.62 ± 0.11 0.60 ± 0.10 0.59 ± 0.10

Predictive model applied to observations
2R  (noDTW) 0.32 0.41 0.58

Note. Reported values indicate the mean and 1-sigma range from the 10 WACCM ensemble members. For ensemble 
members, R-squared is provided both for the dynamically time warped data (DTW), and the non DTW data (noDTW).

Table 1 
Model Parameters and R-Squared Values for the Predictive Model Applied to WACCM Ensemble Members and 
Observations
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more details). The greenhouse gases (e.g., CO2, N2O, and CH4) surface mole fractions, along with surface 
emissions of ozone and aerosol precursors are taken from Meinshausen et  al.  (2011). These prescribed 
surface forcings are based on observations through 2004; for the 2005–2025 period the RCP6.0 projection 
is used. See Figure S7 for WACCMs prescribed mole fractions of CFC-11, CFC-12 and N2O. We consider 
monthly mole fractions at a 1.9° latitude × 2.5° longitude resolution from the surface up to 5.1 × 10−6 hPa 
(∼140 km), with 66 vertical levels. The predictive model is derived using WACCM simulations instead of 
observations due to the limited timeframe of stratospheric observations. Further, this approach allows us 
to isolate the stratosphere influence on the troposphere as it does not require assumptions regarding recent 
unexpected emissions.

4.  Results
Figure 2 illustrates the ACE observed CFC-11 NH-SH anomalies throughout the lower stratosphere and 
upper troposphere. Here, anomalies are calculated after de-seasonalizing and removing a piece-wise lin-
ear trend, with a breakpoint at 2012 (following Montzka et al. [2018]). The piece-wise trend was chosen 
so that anomalies reflect natural variability relative to a background trend that includes an unexpected 
emissions increase following 2012 (Montzka et al., 2018). The analogous figure for WACCM is shown in 
Figure S2. Note that the detrending and de-seasonalizing applied in Figure 2 is used only to illustrate the 
transportation of stratospheric anomalies apparent in ACE observations, and is not the approach taken in 
the predictive model (as described in the Methods). We note a discernable signal of NH-SH anomalies prop-
agating down through the atmosphere. The same occurs for CFC-12 and N2O (Figures S8 and S9). Strong 
correlations between trace gases have been found with ACE data, see for example, Brown et al. (2013). This 
supports the view that differences we see among gases are more likely to be a reflection of surface emissions 
than stratospheric phenomena.

Figure  2 also illustrates correlations of anomalies between ACE observations and AGAGE surface level 
observations; these are remarkably similar to those obtained in WACCM as shown in Figure  S2. While 
observed NH-SH stratospheric anomalies appear strongly correlated to surface NH-SH anomalies in this fig-
ure, we chose to use NH stratospheric growth rates as our explanatory variable because that yielded higher 
correlations with surface growth rate anomalies in WACCM.

Figure 3 provides the central results of our study, focusing on CFC-11. CFC-12 and N2O results are shown 
in Figures S10 and S11. Figures 3a and 3b show the timeseries of the yearly moving averages and growth 
rates in stratospheric and tropospheric observations, with anomalies in the troposphere lagging anomalies 
in the stratosphere by ∼8 months. Interpreting the magnitude of NH-SH anomalies (shown in Figure 3c) for 
all trace gases depends on assumptions about the background trends both at the surface due to emissions, 
and in the stratosphere relating to atmospheric destruction and stratosphere-troposphere exchange. In this 
analysis we use an exponential function to approximate the background trends in both the stratosphere and 
troposphere using observations from 2000 to 2012. We then apply our model to predict tropospheric NH-SH 
values relative to the background NH-SH trend (see Supporting Information for details).

The NH-SH difference in the troposphere shows a clear and sustained departure from its trend around 2013 
(Figures 3a and 3c). While recognizing the potential for some dynamical contribution, Montzka et al. (2018) 
concluded that observed positive NH-SH anomalies in CFC-11 at this time could not be explained by dy-
namical variability alone, indicating an increased and sustained anthropogenic emission was occurring in 
the northern hemisphere. This increased emission is commonly referred to as an unexpected emission, as 
the Montreal Protocol prohibits production of CFCs after 2010, globally. Our results quantify the strato-
spheric dynamics contribution to the observed time series (Figure 3d). A positive anomaly also occurs in the 
stratosphere ∼8 months prior to the tropospheric positive anomaly after 2012. Importantly, the magnitude 
of this predicted anomaly originating in the stratosphere is about one third of the observed surface NH-SH 
anomaly (0.5 ± 0.1 ppt relative to 1.7 ppt between 2012 and 2015) and the duration in the stratosphere is 
short (∼2 years) relative to the observed surface NH-SH anomaly (see Figure 3c). A smaller anomaly is also 
observed following 2012 for CFC-12 (0.2 ± 0.1 ppt) and N2O (0.3 ± 0.1 ppb). In the absence of changes in 
surface level sources and sinks, our model predicts that a positive CFC-11 NH-SH anomaly of 0.5 ± 0.14 ppt 
would be expected during 2020, followed by a decrease in 2021 (−0.18 ± 0.12 ppt), due to stratospheric 
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impacts on the troposphere (as shown in Figure 3c). We predict comparable 2020 anomalies for CFC-12 
(0.3 ± 0.12 ppt) and N2O (0.2 ± 0.07 ppb), and negative anomalies in 2021 for both CFC-12 (−0.3 ± 0.2 ppt) 
and N2O (−0.16 ± 0.11) ppb. We note that the expected anomalies could be partially or even wholly offset 
by decreases in anthropogenic emissions over this time period (Montzka et al., 2021), but our results should 
help to interpret whatever changes in emissions do occur. From the WACCM simulations, we estimate 
anomalies last on average 1 ± 0.5 year from peak to trough, (95% CI of 0.1–2.3 years) suggesting that the 
sustained increase in the CFC-11 NH-SH difference after 2014 is virtually certain not to be due to strato-
spheric influences alone.

R-squared values from the leave-one-out cross-validation (shown in Table 1) indicate that, in the absence 
of significant changes in anthropogenic emissions, stratospheric anomalies can explain up to ∼70% ± 10% 
of surface level NH-SH growth rate anomalies. If DTW is not applied to the data, our model would explain 
∼60% ± 10% of growth rate variability (shown in the noDTW case in Table 1). This is an important distinc-
tion—we do not perform DTW on observations to avoid the risk of over attributing surface anomalies to 
stratospheric anomalies, so we expect the R-squared of our predictive model applied to observations to be 
conservative. Our predictive model produces an R-squared of 0.3, 0.4, and 0.6 for CFC-11, CFC-12, and N2O, 
respectively. For CFC-11 and CFC-12, this falls outside of the 1-sigma range of the noDTW R-squared values 

LICKLEY ET AL.

10.1029/2021GL093700

7 of 9

Figure 3.  Observed and predicted NH-SH differences for CFC-11. (a) The yearly moving average of observed tropospheric NH-SH difference (denoted 
(NH-SH)T, axis on the left in red) and stratospheric NH mole fractions (denoted NHS, axis on right in blue). (b) The yearly moving average growth rates of 
tropospheric NH-SH differences and stratospheric NH mole fractions. The two time axes in (a) and (b) are adjusted by the mean lag times. (c) Observed versus 
predicted tropospheric NH-SH difference, where the prediction is relative to an assumed background trend (dashed line) and thus subject to large uncertainties. 
(d) Observed versus predicted linearly detrended tropospheric NH-SH growth rates. The blue line indicates the median sampled prediction and the shaded 
region indicates the 95% CI.



Geophysical Research Letters

derived from the WACCM validation, whereas the R-squared for N2O is equal to the mean noDTW R-squared 
from the WACCM validation (see Table 1). This suggests that emission anomalies are likely less pronounced 
relative to stratospheric influences for N2O compared to CFC-11 and CFC-12 over this time period. In other 
words, N2O observations exhibit similar correlations between the stratosphere and troposphere as WACCM 
simulations, whereas CFC-11 and CFC-12 do not; we interpret this to support earlier work that identifies 
new and unexpected emissions of CFC-11 after 2012 (Montzka et al., 2018; Rigby et al., 2019), and also to a 
lesser extent for CFC-12 (Lickley et al., 2021; Park et al., 2021). We note, however, that decoupling between 
the stratospheric and tropospheric anomalies are less pronounced after 2012 for CFC-12 such that the pres-
ent study cannot identify the timing and occurrence of anomalous CFC-12 emissions.

5.  Conclusions
In this paper, we set out to derive a predictive model to estimate the contribution of stratospheric trace gas 
anomalies to surface NH-SH anomalies. We find strong correlations between stratospheric NH and trop-
ospheric NH-SH growth rates in WACCM simulations for CFC-11, CFC-12, and N2O, and our simple pre-
dictive model can explain up to 70% of modeled tropospheric NH-SH growth rate variability. Applying the 
predictive model to ACE satellite stratospheric observations and AGAGE in situ observations yields com-
parable results to WACCM simulations for N2O and weaker results for CFC-11 and CFC-12. Most notably, 
the anomalous growth in the NH-SH differences observed after 2012 cannot be explained with our simple 
predictive model, supporting previous studies that other contributing factors (i.e., increased anthropogenic 
emissions) are at play.

Montzka et al. (2021) and Park et al. (2021) provide evidence for reduced global and eastern Chinese CFC-
11 emissions (respectively) in 2019. Looking forward, our predictive model suggests that in the absence 
of further anomalous emissions, a new NH-SH positive anomaly should have occurred in 2020, and that 
negative anomalies can be expected in 2021. If, however, anthropogenic emissions continue to be reduced 
over this time period, this may serve to offset part of the positive anomaly descending from the stratosphere.

The work presented in this paper underscores the value of both stratospheric and surface global observa-
tions, and the need to account for stratospheric dynamics in interpreting surface level NH-SH anomalies in 
terms of anthropogenic impacts. Here, we provide a simple model to do so for CFC-11, CFC-12, and N2O. 
We applied our analysis to NH-SH growth rates, as that required few assumptions regarding background 
trends relative to tropospheric average growth rates. Further analysis would be required to extend this work 
to absolute tropospheric averages, or other trace gases. Our results show that interpreting any future un-
expected emissions and potential production outside the Montreal Protocol can benefit from stratospheric 
observations and analysis.

Data Availability Statement
All data used in this analysis can be freely obtained online (at https://doi.org/10.7910/DVN/JECPN8). All 
code is available upon request from M.L. (mlickley@mit.edu).
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