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Abstract. A chemistry-transport model (CTM) intercompar-
ison experiment (TransCom-CH4) has been designed to in-
vestigate the roles of surface emissions, transport and chemi-
cal loss in simulating the global methane distribution. Model
simulations were conducted using twelve models and four
model variants and results were archived for the period of
1990–2007. All but one model transports were driven by
reanalysis products from 3 different meteorological agen-
cies. The transport and removal of CH4 in six different
emission scenarios were simulated, with net global emis-
sions of 513± 9 and 514± 14 Tg CH4 yr−1 for the 1990s
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and 2000s, respectively. Additionally, sulfur hexafluoride
(SF6) was simulated to check the interhemispheric trans-
port, radon (222Rn) to check the subgrid scale transport,
and methyl chloroform (CH3CCl3) to check the chemical re-
moval by the tropospheric hydroxyl radical (OH). The re-
sults are compared to monthly or annual mean time series
of CH4, SF6 and CH3CCl3 measurements from 8 selected
background sites, and to satellite observations of CH4 in
the upper troposphere and stratosphere. Most models ade-
quately capture the vertical gradients in the stratosphere, the
average long-term trends, seasonal cycles, interannual varia-
tions (IAVs) and interhemispheric (IH) gradients at the sur-
face sites for SF6, CH3CCl3 and CH4. The vertical gradients
of all tracers between the surface and the upper troposphere
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are consistent within the models, revealing vertical transport
differences between models. An average IH exchange time
of 1.39± 0.18 yr is derived from SF6 time series. Sensitiv-
ity simulations suggest that the estimated trends in exchange
time, over the period of 1996–2007, are caused by a change
of SF6 emissions towards the tropics. Using six sets of emis-
sion scenarios, we show that the decadal average CH4 growth
rate likely reached equilibrium in the early 2000s due to the
flattening of anthropogenic emission growth since the late
1990s. Up to 60 % of the IAVs in the observed CH4 concen-
trations can be explained by accounting for the IAVs in emis-
sions, from biomass burning and wetlands, as well as mete-
orology in the forward models. The modeled CH4 budget
is shown to depend strongly on the troposphere-stratosphere
exchange rate and thus on the model’s vertical grid structure
and circulation in the lower stratosphere. The 15-model me-
dian CH4 and CH3CCl3 atmospheric lifetimes are estimated
to be 9.99± 0.08 and 4.61± 0.13 yr, respectively, with little
IAV due to transport and temperature.

1 Introduction

The variability of atmospheric CH4 depends on the spatio-
temporal variations of the surface fluxes, atmospheric trans-
port, and destruction due to OH, Cl and O1D chemistry. In
recent years, measurements of CH4 and related species are
being conducted at an increasingly large number of sites at
hourly or daily time intervals and with high instrumental pre-
cision (Rasmussen and Khalil, 1984; Aoki et al., 1992; Dlu-
gokencky et al., 1998; Cunnold et al., 2002; WDCGG, 2010,
for a complete list of observational programs). Satellite CH4
observations from SCanning Imaging Absorption SpectroM-
eter for Atmospheric CartograpHY (SCIAMACHY), Atmo-
spheric Infrared Sounder (AIRS), and Greenhouse Gases Ob-
serving SATellite (GOSAT) are also becoming available, al-
beit at a lower precision (Frankenberg et al., 2008; Xiong
et al., 2008; Yoshida et al., 2011). Significant developments
in understanding the distributions, trends and interannual
variations of CH4 emissions and sinks have been achieved
in the past two decades through forward modeling (e.g. Fung
et al., 1991; Gupta et al., 1996; Houweling et al., 2000; Den-
tener et al., 2003; Wang et al., 2004; Patra et al., 2009b).
Inverse model results show the ability of the models to repro-
duce the observed atmospheric CH4 trends and variabilities
within the uncertainty of the processes involved (Hein et al.,
1997; Houweling et al., 1999; Mikaloff-Fletcher et al., 2004;
Chen and Prinn, 2006; Bousquet et al., 2006; Bergamaschi
et al., 2009). However, further improvements (reduction in
the posterior emission uncertainty) of inverse modeling re-
sults depend on a better quantification of (the errors in) the
prior emissions and sinks, and on error reductions in forward
model transport. Presently, inverse estimates of global CH4
emissions range between 500 to 600 Tg yr−1, depending on
the transport properties and the chemical loss parameteriza-

tion in the forward models. Bottom-up estimations of In-
dividual flux components vary by even greater percentages
(e.g. Matthews and Fung, 1987; Yan et al., 2009).

The performance of atmospheric transport models has
been investigated within the TransCom project since the
early 1990s for the non-reactive tropospheric species, such
as sulfur hexafluoride (SF6) and carbon dioxide (CO2) (Law
et al., 1996, 2008; Denning et al., 1999). Convective pa-
rameterizations in CTMs have been tested through simula-
tion of Radon (222Rn), which has a radioactive decay half-
life of 3.8 days (e.g. Jacob et al., 1997). The full chem-
istry model simulations of reactive species with a focus on
ozone (O3) chemistry have also been tested using multiple
CTMs, where CH4 is treated as a tracer with a prescribed
concentration evolution (Stevenson et al., 2006, and refer-
ences therein). Note that most, if not all, full chemistry mod-
els do not treat CH4 in an interactive manner, because of its
long lifetime. The CH4 lifetime ranged from 6.3 to 12.5 yr
due to large range of simulated OH concentrations in the par-
ticipating models (Stevenson et al., 2006). A more conser-
vative estimate of CH4 lifetime is required for calculating
the global warming potential (GWP) for CH4 and its impact
on climate change, or developing effective emission mitiga-
tion policies. According to Shindell et al. (2009) the 100-yr
integrated GWP of CH4 is sensitive to changes in oxidant-
aerosol precursor emissions and to OH-feedbacks of CH4
emissions itself. Proper understanding of the CH4 budget
is crucial for these assessments.

The aim of the TransCom-CH4 experiment is to quan-
tify the role of transport, emission distribution and chem-
ical loss in simulating the interhemispheric (IH) gradient,
seasonal cycle, synoptic variation and diurnal cycle of CH4.
Only the first two, IH gradient and seasonal cycles, are dis-
cussed in this paper. The dependence of the CH4 budget on
model vertical transport in the stratosphere is also analysed.
We setup a long simulation period (1988–2007, including
two years of spin-up) for the following reasons: (1) in the
1990s and 2000s methane growth rates have fluctuated be-
tween 15 ppb yr−1 to−5 ppb yr−1 (Dlugokencky et al., 1998;
Simpson et al., 2006; Rigby et al., 2008), and (2) we would
like to obtain a better understanding of the role of emissions
(using a set of six CH4 emissions scenarios), chemical loss,
and transport model characteristics, such as the stratosphere-
troposphere exchange (STE) and the IH exchange time on
CH4 concentration variations in the troposphere. The pro-
posed 18-yr simulation period allows a proper quantification
of the removal fluxes in the troposphere and stratosphere and
of the influence of transport processes on these removal rates.
Since the previous TransCom intercomparison experiments
spanned only a few years, the 18 yr of SF6 simulation al-
lows us to track the interannual variability (IAV) in the IH
exchange time for the first time. We also discuss the de-
pendence of CH4 and CH3CCl3 lifetimes on the model grid
structure and transport, as well as the transport and tempera-
ture as drivers of IAVs in lifetimes.
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Fig. 1. Schematic diagram of TransCom-CH4 model simulation experiment.

In Sect. 2, we describe the experimental protocol, followed
by the key information on the participating models and anal-
ysis methodology. We focus this analysis (Sect. 3) on the
comparison of model results with atmospheric observations
of SF6, CH3CCl3 and CH4 at 8 surface sites and the salient
differences in model properties. An attempt is also made
to understand possible implications of (1) inert tracer (SF6)
transport or short-lived radioactive tracer (222Rn) transport
on the lifetimes and distributions of chemically active species
(CH3CCl3, CH4), and (2) the effect of the OH abundance,
as constrained by CH3CCl3, on CH4. Simulations of SF6,
222Rn, CH3CCl3 and six CH4 emission scenarios are com-
monly referred to as model tracers. Scope for further anal-
ysis using the TransCom-CH4 database and conclusions are
given in Sects. 4 and 5, respectively.

2 Models, measurements and methods

Previous TransCom experiments focused on chemically non-
reactive species (SF6, CO2, 222Rn). A CH4 intercomparison
requires the introduction of atmospheric chemistry. Addi-
tionally, the sources and atmospheric lifetime of CH4 are
distinctly different from CO2, which may provide a dif-
ferent view on transport model differences. Detailed doc-

umentation of the requested simulation is available in the
TransCom-CH4 protocol (Patra et al., 2010). Chemistry-
transport model simulations were requested for the period of
1 January 1990 to 31 December 2007, after a spin-up of 2-yr
(1988–1989) using analyzed or atmospheric general circula-
tion model (AGCM) meteorology or a combination of both
(referred here as AGCM-nudged). A schematic diagram of
TransCom-CH4 model intercomparison set-up is shown in
Fig. 1.

2.1 Photochemical and surface loss processes

The following chemical removal reactions for CH4 (R1–R3)
and CH3CCl3 (R4–R6) are prescribed in the forward simula-
tions.

CH4+OH
kOH
−→ CH3+H2O[

kOH = 2.45×10−12exp(−1775/T )
]

(R1)

CH4+O1D
kO1D
−→ Products

[
kO1D=1.5×10−10

]
(R2)

CH4+Cl
kCl
−→ CH3+HCl[

kCl = 7.3×10−12exp(−1280/T )
]

(R3)
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CH3CCl3+OH
kOH
−→ Products[

kOH = 1.64×10−12exp(−1520/T )
]

(R4)

CH3CCl3
JCH3CCl3

−→ Products (R5)

CH3CCl3+OH
depositionCH3CCl3

−→ Oceanic CH3CCl3 (R6)

The temperature-dependent reaction rates (k; units: cm3

molecule−1 s−1) are taken from the JPL synthesis of chem-
ical kinetics (Sander et al., 2006). The monthly-mean OH
fields are provided here for online calculation in the model
by combining the semi-empirically calculated tropospheric
(Spivakovsky et al., 2000) and 2-dimensional (2-D) model
simulated stratospheric distributions. For CH4 reactions with
Cl and O1D radicals in the stratosphere, parameterized loss
rates [kO1D ×O1D+kCl ×Cl] are provided, which are based
on the Cambridge 2-D model (Velders, 1995).

The tropospheric OH field is reduced by 8 %, an amount
that was required to optimize the agreement between the
TM5 simulated and observed CH3CCl3 decline since 2000
(Huijnen et al., 2010). The model simulations performed
here allow us to verify whether observations of CH3CCl3
can also be reproduced for a longer simulation period, i.e.
1990–2007, by TM5 and a variety of other models. The sup-
plied OH field has about equal OH abundance in the North-
ern Hemisphere (NH) and the Southern Hemisphere (SH)
(Spivakovsky et al., 2000). Since the NH/SH OH-ratio in
full chemistry model simulations varies between 1.1 and 1.5
(Krol et al., unpublished data, 2008, based on the model in-
tercomparison described in Shindell et al., 2006) we encour-
aged modelers to submit another set of simulations using
their preferred OH field, e.g. obtained by a full chemistry
version of their model.

For CH3CCl3 (MCF), the photolysis ratesJ due to solar
UV radiation are provided from an Atmospheric general cir-
culation model-based CTM (ACTM; Patra et al., 2009b) and
interpolated on each model’s grid. Because the resolution
in the stratosphere varies widely between models, it is nec-
essary to scale the stratospheric loss of MCF to a common
value. This value is calculated by mass-weighted averaging:

Jav,CH3CCl3 =

∑
i,j,k

JCH3CCl3(i,j,k)×M(i,j,k)∑
i,j,k

M(i,j,k)
(1)

Here,M(i,j,k) denotes the air mass in gridbox (i,j,k) from
ACTM. Modelers were required to scale their interpolated
JMCF field to match theJav,MCF field of the mass-weighted
annual and global meanJav,MCF value of 7.959× 10−8 s−1.
Similarly, the annual and global mean rate constant for CH4
oxidation due to stratospheric Cl and O1D combined is
rescaled to 2.069× 10−10 s−1.

The monthly deposition velocities (depositionCH3CCl3;
units: m s−1) of CH3CCl3 to ocean surfaces are provided by
Krol et al. (1998; see also Kanakidou et al., 1999). This sink
should be applied in the model as:

CH3CCl3=(CH3CCl3)0×exp

(
−depositionCH3CCl3×

1

dz
×dt

)
(2)

where, dz= atmospheric lowest layer depth (m),
dt= timestep (s), and subscript 0 indicates initial con-
centration.

Radon decays in the atmosphere with a half-life of
3.8 days, and this decay is calculated in the model at each
timestep, following

222Rn=
(

222Rn
)

0
×exp(−dt ×2.11×10−6) (3)

where222Rn is the radon mixing ratio at all gridpoints. This
setup follows the recommendation of World Climate Re-
search Programme (Jacob et al., 1997).

Due to the long timescales of CH4 and CH3CCl3 oxidation
and vertical transport in the stratosphere (age-of-air∼5 yr),
several years of spin-up are required to establish realistic
CH4 and CH3CCl3 vertical profiles throughout the model
atmosphere. A set of 3-D initial conditions, prepared fol-
lowing a 10-yr spin-up simulation by ACTM, were made
available for 1 January 1988 for CH4, SF6 and CH3CCl3.
CH4, SF6 and CH3CCl3 concentrations at South Pole (SPO)
are 1655 ppb, 1.95 ppt and 130 ppt, respectively, for Jan-
uary 1988. Radon will be spun-up quickly due to its half-life
of several days. Hence, its initial concentration is set to zero.

2.2 Fluxes

The typical seasonal variations of the six CH4 emission sce-
narios are shown in Fig. 2a. Annual total emissions time
series are depicted in Fig. 2b for CH4, and in Fig. 2c for SF6
and CH3CCl3. The following source and sink components of
CH4 were considered in the six different scenarios listed in
Table 1:

1. Interannually varying anthropogenic emissions (IAV
ANT), based on annual mean 1◦

× 1◦ maps from the
Emission Database for Global Atmospheric Research
(EDGAR; version 3.2/FT) (Olivier and Berdowski,
2001). The combination of different emission cate-
gories and the inter-/extra-polation of EDGAR emission
maps for the years 1990, 1995, 2000 are described else-
where (Patra et al., 2009b).

2. Anthropogenic emissions (IAV ANT E4), based on a
more advanced EDGAR database (version 4.0) (http:
//edgar.jrc.ec.europa.eu), where 1◦ × 1◦ emission maps
are available for each year until 2005. The 2005 emis-
sions were also used for the 2006–2008 period.
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Table 1. List of tracers simulated in the TransCom-CH4 intercomparison project. See Sect. 2.2 for a description of the CH4 flux components;
e.g. cyclostationary natural (CYC NAT), interannually varying anthropogenic (IAV ANT), biomass burning (BB), wetland (WL).

Parameters Description Time resolution

CH4 tracers using different emission secnarios

1. CH4 CTL CYC NAT (CYC BB & CYC WL) Monthly; Partial IAV
+ IAV ANT EDGAR 3.2

2. CH4 CTL E4 CYC NAT+ IAV ANT EDGAR4.0 Monthly; Partial IAV
3. CH4 BB CYC NAT – 0.35 CYC BB+ IAV BB Monthly; Partial IAV

+ IAV ANT EDGAR 3.2
4. CH4 WL BB CYC NAT – 0.35 CYC BB+ IAV BB Monthly; Full IAV

– CYC WL + 0.76 IAV WL
+ IAV ANT EDGAR 3.2

5. CH4 INV IPSL/LSCE inversion Monthly; Full IAV
6. CH4 EXTRA* CYC NAT – 0.35 CYC BB+ IAV BB Monthly; Full IAV

– CYC WL – Rice+ IAV WLe
(0.69 Wetland+ 0.895 Rice)

+ IAV ANT EDGAR 3.2

Other species/tracers

7. SF6 EDGAR4.0; Global totals modified Annual; Full IAV
8. Radon-222 1.0 and 0.1 atom m−2 s−1 over land and ocean, Annual; No IAV
(222Rn) respectively
9. CH3CCl3 EDGAR3.2 with trends and distributions Annual; Full IAV
(MCF) modified

* this scenario is called EXTRA because the VISIT terrestrial ecosystem model (Ito and Inatomi, 2011) fluxes are still under evaluation, but included here since no other bottom-up
wetland emission scenario was available with IAV for the full simulation period at the time the intercomparison protocol was released. VISIT is driven by climate variables from the
Climate Research Unit time series version 3.0 (CRU TS3.0) dataset (Mitchell and Jones, 2005; updated values) and NCEP/NCAR reanalysis (Kalnay et al., 1996) for the periods of
1988–2005 and 2006–2007, respectively, andCH4 cycling in the inundated areas is modeled using the scheme of Cao et al. (1998, and references therein).

3. Cyclostationary natural emissions (CYC NAT), such as
those from all types of natural wetlands, domestic and
large-scale biomass burning, and termites, based on the
GISS inventory (Matthews and Fung, 1987; Fung et al.,
1991), and emissions due to rice paddies taken from Yan
et al. (2009). All these emissions are scaled as in Patra
et al. (2009b). Though predominantly anthropogenic,
emissions from rice cultivation are included in this cate-
gory because its seasonal cycle is controlled by seasonal
rainfall and temperature. The emissions due to oceanic
exchange (∼10 Tg CH4 yr−1) are distributed over the
coastal region (Lambert and Schmidt, 1993; Houwel-
ing et al., 1999) and mud volcano emissions are based
upon Etiope and Milkov (2004).

4. Wetland emissions with interannual variation (IAV WL)
have been derived from the wetland emission mod-
ule of the ORganizing Carbon and Hydrology in Dy-
namic EcosystEms (ORCHIDEE) terrestrial ecosystem
model (Ringeval et al., 2010). This model uses satellite-
derived area of inundation for the period of 1994–2000
(Prigent et al., 2007). The emission is scaled by a mul-
tiplication factor of 0.76 to match the wetland emission
component in CYC NAT. An average seasonal cycle is

used for the rest of the simulation periods (1988–1993
and 2001–2008).

5. Second set of wetland and rice emissions (IAV WLe)
is obtained from the Vegetation Integrative Simulator
for Trace gases (VISIT) terrestrial ecosystem model (Ito
and Inatomi, 2011), which calculates inundated area
based on analyzed rainfall, temperature (Mitchell and
Jones, 2005). The rice and wetland emissions are scaled
by 0.895 and 0.69, respectively, to match with CYC
NAT.

6. Biomass burning emissions (IAV BB) are taken from
the Global Fire Emission Database (GFED version 2),
representing mainly forest and savannah burning (van
der Werf et al., 2006). Since this dataset is available
only after 1997, an average seasonal cycle is used for
the 1988–1996 period. Unlike the wetland emissions,
global total IAV BB emissions are lower than those in-
corporated in CYC NAT. Thus biomass burning emis-
sions in CYC NAT is only partially replaced by IAV
BB (see Table 1). This methodology is likely to double
count some of the open burning and to underestimate
the emissions from closed burning.
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Fig. 2. Examples of CH4 emission seasonalities corresponding to
the years 1997 and 1998 are shown in(a) (the black line is hidden
behind the red line), and annual mean CH4 emissions for the pe-
riod of 1988–2008 are depicted in(b). The annual mean SF6 and
CH3CCl3 fluxes are shown in(c).

7. Inversion-derived emissions (IAV INV) are obtained by
optimizing surface fluxes to reproduce the measured
CH4 concentrations using the LMDZ model for the pe-
riod of 1988–2005 (Bousquet et al., 2006). An average
seasonal cycle is repeated for 2006–2008.

8. The soil sink represents a climatological average year,
accounting for seasonality, derived from the LMDZ at-
mospheric CH4 inversion (Bousquet et al., 2006). The
global total removal amounts to 27.21 Tg CH4 yr−1.

The integrated CH4 emissions for the different combinations
of emission fields (scenario 1 to 6 in Table 1) agree within
3 Tg CH4 over 1990–2005 (8675 Tg CH4 for CH4 CTL,

which is 542 Tg yr−1 on average). Only the IAV INV sce-
nario total emissions are slightly lower (8641 Tg CH4).

Three other species (SF6, 222Radon and CH3CCl3) are
simulated using the following fluxes:

1. Annual mean SF6 emission distributions at 1◦ × 1◦ are
taken from EDGAR 4.0 (2009) for the period 1988–
2005, and the global totals are scaled to Levin et
al. (2010). The 2005 distribution is used from 2006 on-
wards. SF6 emissions increased from 4.77 Tg yr−1 in
1990 to 6.79 Tg yr−1 in 2007.

2. Radon emissions are constructed based on the sur-
face type in each model grid-cell; 0 poleward
of 70◦, 8.23× 10−23 mol m−2 s−1 for 60–70◦, and
1.66× 10−20 and 8.30× 10−23 mol m−2 s−1 for land
and ocean grids, respectively, within 60◦ S–60◦ N (Ja-
cob et al., 1997). Radon emission fields were not
rescaled to match a global total source, but are ex-
pected to produce a global radon source of approxi-
mately 2.2× 10−6 mol s−1.

3. The annual mean CH3CCl3 emission distribution is
taken from EDGAR3.2 and linearly corrected for the
global totals following McCulloch and Midgley (2001)
for the period 1988–1998. Emissions for 1999 to 2002
are taken as 27.5, 26.0, 17.7, and 16.1 Gg yr−1, respec-
tively. After 2002, the regional emission trends fol-
low an exponential decay with a timescale of 5 yr (Krol
et al., 2003; updated).

2.3 Participating models and output

Twelve chemistry-transport models and four of their vari-
ants (2 at higher horizontal resolution and 2 using different
OH, Cl and O(1D) fields) have submitted simulation results
for the period 1990–2007 (Table 2). Half of these mod-
els (ACTM, CCAM, IMPACT, LMDZ, PCTM, TM5) also
participated in the previous TransCom continuous experi-
ment, where they were tested for interhemispheric transport
using SF6, and synoptic and diurnal scale variability using
continuous CO2 measurements at surface sites (Law et al.,
2008; Patra et al., 2008). Six other models (ACCESS, CAM,
GEOS-Chem, MOZART, NIES08i, TOMCAT) participated
for the first time in a TransCom experiment. The model hor-
izontal resolution varied from 1◦ × 1◦ longitude× latitude
to 6◦

× 4◦. In the vertical, 19 to 67 levels were employed.
Salient features of each model configurations (resolutions,
meteorological fields) are given in Table 2 for guidance pur-
pose only, and do not automatically link with model perfor-
mance as evaluated for various features in this study.

Concerning the wind field and other meteorology, all
models, except ACCESS, used meteorological fields from
weather forecast models either by interpolation (offline mod-
els) or by nudging towards horizontal winds (U , V ) and tem-
perature (online models). Most models generated output as
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Table 2. Overview of participating transport models and model variants, and average lifetimes of atmospheric CH4 and CH3CCl3 are given.

Sl. No. Model namea Institutionb Resolution Meteorologye Avg. lifetime (1992–07)f

Horizontalc Verticald CH4 CTL CH3CCl3

1 ACCESS CSIRO 3.75× 2.5◦ 38 AGCM; SST 9.93± 0.13 4.55± 0.15
2 ACTM RIGC ∼2.8× 2.8◦ 67σ NCEP2; U, V, T; SST 10.0± 0.10 4.60± 0.13
2a ACTM OH$ RIGC ∼ 2.8× 2.8◦ 67σ NCEP2; U, V, T; SST 9.51± 0.10 4.84± 0.13
3 CAM CU 2.5× ∼ 1.9◦ 28σ NCEP/NCAR 10.2± 0.11 3.77± 0.13
4 CCAM CSIRO ∼ 220 km 18σ NCEP; U, V; SST 9.94± 0.27 4.01± 0.15
5 GEOS-Chem UoE 2.5× 2.0◦ 30/47η NASA/GSFC/GEOS4/5 9.60± 0.11 4.70± 0.13
5a GEOS-ChemDOH UoE 2.5× 2.0◦ 30/47η NASA/GSFC/GEOS4/5 9.95± 0.11 4.84± 0.13
6 IMPACT LLNL 5.0× 4.0◦ 55η NASA/GSFC/GEOS4 10.1± 0.05 4.63± 0.3
6a IMPACT 1× 1.25 LLNL 1.25× 1.0◦ 55η NASA/GSFC/GEOS4 9.99± 0.07 4.54± 0.16
7 LMDZ LSCE 3.75× 2.5◦ 19η ECMWF; U, V, T; SST 10.0± 0.09 3.90± 0.25
8 MOZART MIT ∼ 1.8× 1.8◦ 28σ NCEP/NCAR 9.88± 0.15 3.90± 0.15
9 NIES08i NIES 2.5× 2.5◦ 32σ -θ JCDAS, ERA-interim-PBL 10.0± 0.06 4.75± 0.02
10 PCTM GSFC 1.25× 1.0◦ 58η NASA/GSFC/GEOS5 10.1± 0.1 4.54± 0.21
11 TM5 SRON 6.0× 4.0◦ 25η ECMWF, ERA-interim 10.1± 0.12 4.87± 0.03
11a TM5 1× 1 SRON 1.0× 1.0◦ 25η ECMWF, ERA-interim 10.1± 0.11 4.88± 0.14
12 TOMCAT UoL ∼ 2.8× 2.8◦ 60η ECMWF, ERA-40/interim 9.98± 0.12 4.71± 0.18

a CTMs driven by AGCM transport are identified in bold (nudging parameters in right-most column), and model variants are shown in italics. The model variants are indicated by
post-fixed parameters, following a “”.
b CSIRO: Commonwealth Scientific and Industrial Research Organisation, Australia; GSFC: NASA Goddard Space Flight Center, USA; RIGC: Research Institute for Global
Change, Japan; CU: Cornel University, USA; LLNL: Lawrence Livermore National Laboratory, USA; LSCE: Laboratoire des Sciences du Climat et de l’Environnement, France;
NIES: National Institute for Environmental Studies, Japan; SRON: Netherlands Institute for Space Research; UoE: University of Edinburgh, UK; UoL: University of Leeds, UK.
c Longitude× latitude or distance or spectral resolution indicated by T (triangular) maximum wave number (T42 and T63 for∼ 2.8× 2.8◦ and∼ 1.8× 1.8◦, respectively).
d Terrain-following (height) coordinate system for ACCESS,σ vertical coordinates are pressure divided by surface pressure,η vertical coordinates are a hybrid sigma-pressure
coordinate (GEOS-Chem has 30 or 47 layers for 1990–2006 or 2007, respectively), NIES08i has a hybrid sigma-isentropic.
e The source of meteorology (NCEP2 (AMIP DOE II): Kanamitsu et al., 2002; NCEP: Kalnay et al., 1996; NASA/GSFC/GEOS4/5: Bloom et al., 2005; ECMWF: Uppala et al.,
2005; JCDAS: Onogi et al., 2007) and parameters used in nudged AGCMs are given.
f The averaging period for IMPACT1×1.25 (2002–2007) and TM51×1 (2003–2007) differ.
$ The tropospheric OH field is taken from CHASER full chemistry model (Sudo et al., 2002) and scaled by× 0.88, and stratospheric OH is taken from AGCM (Takigawa et al.,
1999) as discussed in Patra et al. (2009a). SF6 emissions are used from EDGAR4.0 without scaling the global totals to match with Levin et al. (2010).

1-hourly averages, except LMDZ and MOZART, which pro-
vided output as 3-hourly averages.

Details of individual transport models can be found in
the following references; ACCESS (Corbin and Law, 2011),
ACTM and ACTM OH (Patra et al., 2009a, b), CAM (Gent
et al., 2009), CCAM (Law et al., 2006), GEOS-Chem
and GEOS-ChemDOH (Pickett-Heaps et al., 2011; Fraser
et al., 2011), IMPACT and IMPACT1× 1.25 (Rotman et al.,
2004), LMDZ (version 4; Hourdin et al., 2006), MOZART
(version 4; Emmons et al., 2010), NIES08i (Belikov et al.,
2011), PCTM (Kawa et al., 2004), TM5 and TM51× 1
(Krol et al., 2005), TOMCAT (Chipperfield, 2006).

The TransCom-CH4 experiment archived model simula-
tions for 18 yrs and 9 tracers. We have sampled model output
at 280 surface sites and 115 vertical profile sites (at all model
levels within the troposphere) at hourly time intervals. 3-D
output at 17 standard pressure levels for monthly-means for
1990–2007, and noon-time daily values for 2001–2007 are
also archived.

2.4 Observational data sources and processing

Selected sites from the Advanced Global Atmospheric Gases
Experiment (AGAGE;http://agage.eas.gatech.edu) and the
NOAA Earth System Research Laboratory, Global Monitor-
ing Division (http://www.esrl.noaa.gov/gmd) networks are
used in this study. These sites all have simultaneous measure-
ments of CH4, SF6, and CH3CCl3 covering the 1990s and
2000s (Table 4). Unfortunately, radon measurements are not
available for most of these sites. Monthly or annual mean ob-
servations have been calculated from continuous (hourly av-
erages) or flask sampling (events) measurements data avail-
able from the World Data Center for Greenhouse Gases web-
site (WDCGG, 2010). NOAA flasks are usually sampled un-
der clean air (or baseline) conditions; this is usually onshore
flow at coastal sites. The AGAGE continuous records have
been flagged to remove local and regional pollution events.

The model outputs are extracted for the correspond-
ing sites and sampling time from the hourly surface data
files. All the models sampled concentrations for BRW and
CGO stations at the nearest full ocean grid, i.e. BRWOCN
and CGOOCN, respectively, to better represent baseline

www.atmos-chem-phys.net/11/12813/2011/ Atmos. Chem. Phys., 11, 12813–12837, 2011

http://agage.eas.gatech.edu
http://www.esrl.noaa.gov/gmd


12820 P. K. Patra et al.: TransCom model simulations of CH4 and related species

conditions. However, note that some models, e.g. TM5, in-
terpolate model output to the site locations, and submit iden-
tical values at the land and ocean grids for the coastal sites.
The results of HBA (75.6◦ S, 26.5◦ W, 10 m) site are used as
a replacement for the SPO site for PCTM. These selections
are made as per the modeler’s advice.

For CH4, the NOAA-2004 calibration scale (Dlugokencky
et al., 2005) agrees within 5 ppb with the AGAGE/Tohoku
University calibration scale (Aoki et al., 1992). The calibra-
tion scales for CH3CCl3 are as per the Scripps Institution of
Oceanography (SIO) 2005 (Prinn et al., 2005) for AGAGE
and NOAA-2003 (http://www.esrl.noaa.gov/gmd/ccl/scales/
CH3CCl3scale.html) for NOAA sites. Those for SF6 are
based on SIO 2005 (Rigby et al., 2010) and NOAA-2006
(http://www.esrl.noaa.gov/gmd/ccl/sf6scale.html). The
AGAGE and NOAA scales for SF6 are in excellent agree-
ment (NOAA–AGAGE= 0.02± 0.01 ppt, compared to re-
peatability of the analytical system of 0.04 ppt) (Rigby
et al., 2010). The systematic NOAA–AGAGE difference of
∼ 4 ppt in 1992 reduces linearly to around 0 ppt in 2001 for
the CH3CCl3 concentrations as determined from co-located
measurements at CGO, SMO and MHD by both the networks
(P. Krummel and T. Arnold, personal communication, 2010).

As a check for the stratospheric CH4 distribution simu-
lated by the models, a climatology of CH4 vertical profiles
measured by the ACE-FTS (Atmospheric Chemistry Experi-
ment – Fourier Transform Spectrometer) instrument onboard
the SCISAT-1 satellite in the upper troposphere and strato-
sphere altitudes has been used (De Mazière et al., 2008).
Please note that the data coverage of the ACE-FTS instru-
ment in the tropical region is sparse. The HALOE/UARS
(Halogen Occultation Experiment onboard the Upper Atmo-
sphere Research Satellite) (Park et al., 1996) had a denser
coverage and measurements of stratospheric CH4 from this
are also used for validating simulated vertical gradients in
the tropical stratosphere (100–10 mb).

For this analysis, the models were sampled within 1 to
3 h of the sampling times of the measurements. Time se-
ries were constructed of monthly or annual mean samples
for verification of model simulated seasonal cycles and inter-
annual variability, respectively. The Pearson’s moment cor-
relation (Press et al., 1986) analysis is performed to evaluate
the agreements between the simulated and observed time se-
ries for seasonal cycles and interannual variations at the 8
selected sites.

2.5 Calculation of IH gradients, IH exchange time, and
atmospheric lifetimes

The IH exchange time (τex) is estimated from the SF6 annual
mean concentration time series and the ratio of emission in
the NH (En) and SH (Es) using (Patra et al., 2009a, and ref-
erences therein):

τex=

[
1cn−s

(
En

Es
+1

)]
/

[
En

Es

dcs

dt
−

dcn

dt

]
(4)

cs andcn are the average concentrations of SH and NH sites,
and1cn−s is IH concentration gradient. Derivation of this
equation assumes that1cn−s is in steady state (Jacob et al.,
1987). We used two sites in the NH (BRW, MLO) and SH
(CGO, SPO) to estimate the hemispheric average concentra-
tions cn and cs, respectively, at yearly time intervals (dt).
Because SF6 measurements at ALT are not available after
2005, BRW is chosen for this analysis. The valuescn − cs
are shown as IH gradients of each species. We have tested
that the calculatedτex does not depend strongly on theEn

Es
ratio.

We also estimated CH4 and CH3CCl3 lifetimes (τ ) using
the mass balance equation

dB

dt
= E−L = E−

B

τ
(5)

B, E and L are the annual total atmospheric burden, net
surface emission and photochemical loss, respectively. As
approximate estimates ofB, average concentrations of CH4
and CH3CCl3 for 8 sites are multiplied by the concentration-
to-mass conversion factors of 2.845 Tg CH4 ppb−1 and
23.689 Gg CH3CCl3 ppt−1, respectively. Ideally, vertical
distribution properties of each species should be accounted
for with appropriate air mass factors for calculatingB. How-
ever, we note that the average lifetimes over the period of
2000–2007 calculated using ACTM simulated gridded loss
rates agree within 0.01 yr for CH3CCl3 with the lifetimes
calculated using Eq. (5) suggesting that the simplification is
acceptable.

3 Results and discussions

3.1 Zonal mean concentrations

Figure 3 compares the latitude-pressure variations of the
zonal mean CH4 CTL scenario in the troposphere and
lower stratosphere to representative ACE-FTS measurements
(please refer to Figs. S1–S17 for individual model compari-
son plots of222Rn, SF6 and CH4 along the 70◦ E and 180◦ E
longitudes, and zonal mean CH3CCl3 distributions corre-
sponding to the years 1994 and 2005). Generally, all mod-
els exhibit similar large-scale features, equator-pole latitu-
dinal gradients, and vertical gradients in the lower strato-
sphere. Most significantly different, however, is the tran-
sition between the troposphere and stratosphere and the
heights at which the vertical gradients maximize in the mod-
els (the green-to-blue shaded regions). The ACCESS/GEOS-
Chem/NIES-08i and CAM/MOZART/CCAM models show
the maximum and minimum decrease rates of CH4 with in-
creasing height, respectively, in the height range of 100–
50 mb. CAM, CCAM and MOZART models have only few
vertical layers above 100 mb and use the same reanalysis
wind fields from NCEP, and the NIES model employs isen-
tropic coordinate system in the stratosphere. The formula-
tion of models is known to affect the simulation of tracer

Atmos. Chem. Phys., 11, 12813–12837, 2011 www.atmos-chem-phys.net/11/12813/2011/

http://www.esrl.noaa.gov/gmd/ccl/scales/CH3CCl3_scale.html
http://www.esrl.noaa.gov/gmd/ccl/scales/CH3CCl3_scale.html
http://www.esrl.noaa.gov/gmd/ccl/sf6_scale.html


P. K. Patra et al.: TransCom model simulations of CH4 and related species 12821

Fig. 3. Annual and zonal mean latitude-pressure (in mb) cross-sections of CH4 for tropospheric and lower stratospheric altitudes as observed
by the ACE-FTS instrument (a; climatology) and as simulated by the models in 2000(b–q). The black line in(a) shows the climatological
tropopause height. The contour lines in (c andd) show CH4 loss rate (units: molecule cm−3 s−1) as in the ACTM and ACTMOH, respec-
tively. An offset is added to the concentrations in each panel (given after the model name in ppb) that adjusts the model fields to a common
average value of 1770 ppb between 950 mb and 500 mb. Detailed model-to-model comparisons for222Rn, SF6, CH4 and CH3CCl3 for two
seasons and over two longitudes are available in the Supplement (Figs. S1–S17).
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Table 3. Multi-model averages (± 1σ ; and between model variability defined by 1σ /average, within parenthesis in %) of simulated SF6
(ppt), CH4 CTL (ppb), CH3CCl3 (ppt) and222Rn (× 10−21) gradients in the troposphere and UT/LS region for three broad latitude bands,
namely, the SH midlatitude, tropics and NH midlatitude.

Species SH (60–30◦ S) Tropics (15◦ S–15◦ N) NH (30–60◦ N)

Tropospheric gradients

Difference between: 850–400 mb 850–200 mb 850–400 mb
SF6 −0.026± 0.005 (18 %) 0.044± 0.017 (39 %) 0.128± 0.018 (14 %)
CH4 −9.91± 2.57 (26 %) 17.18± 7.69 (45 %) 44.65± 5.91 (13 %)
CH3CCl3 0.473± 0.145 (31 %) 0.295± 0.182 (62 %) 1.01± 0.25 (25 %)
222Rn 0.984± 0.527 (54 %) 8.66± 2.73 (32 %) 23.90± 6.73 (28 %)

UT/LS gradients

Difference between: 200–100 mb 100–50 mb 200–100 mb
SF6 0.158± 0.074 (47 %) 0.264± 0.148 (56 %) 0.229± 0140 (61 %)
CH4 84.45± 35.89 (43 %) 124.04± 65.07 (52 %) 128.77± 64.96 (50 %)
CH3CCl3 7.86± 1.37 (17 %) 16.59± 4.48 (27 %) 9.79± 3.75 (38 %)
222Rn 1.084± 0.708 (65 %) 0.415± 0.203 (49 %) 0.353± 0.445 (126 %)

Table 4. Average (across all models) correlation coefficient (r) between model simulated and observed seasonal cycles and interannual
variation of CH4, SF6 and CH3CCl3.

Tracer/Site∗ ALT BRW MHD MLO RPB SMO CGO SPO

For seasonal cycles (2002–2003)

CH4 CTL .16± .3 −.09± .2 .73± .1 .63± .1 .86± .1 .74± .2 .98± .02 .96± .1
CH4 CTL E4 .21± .3 −.10± .3 .72± .1 .69± .1 .88± .1 .71± .2 .97± .02 .96± .1
CH4 BB .10± .3 −.11± .2 .68± .1 .66± .1 .86± .1 .72± .2 .95± .1 .96± .1
CH4 WL BB .38± .3 .48± .2 .42± .2 .70± .1 .86± .1 .64± .3 .94± .1 .95± .1
CH4 INV .88± .1 .63± .2 .92± .1 .74± .1 .88± .1 .61± .2 .95± .02 .92± .1
CH4 EXTRA .84± .1 .37± .2 .79± .1 .50± .2 .80± .1 .69± .3 .93± .1 .95± .1
SF6 .48± .2 .23± .2 .68± .1 -.06± .1 .13± .2 .70± .4 .43± .2 .50± .2
CH3CCl3 .78± .1 .93± .02 .87± .1 .91± .1 .96± .02 .89± .1 .88± .1 .81± 1

For interannual variations (CH4, CH3CCl3: 1991–2007; SF6: 1996–2007)

CH4 CTL .52± .2 .14± .2 .66± .1 .32± .2 .34± .2 .38± .2 .46± .2 .43± .2
CH4 CTL E4 .27± .2 .01± .2 .46± .2 -.02± .2 .05± .3 .24± .2 .03± .2 −.06± .2
CH4 BB .69± .2 .40± .2 .76± .1 .47± .2 .75± .1 .54± 2 .60± .2 .57± .2
CH4 WL BB .55± .2 .47± .2 .51± .2 .38± .2 .68± .2 .53± .2 .48± .1 .46± .2
CH4 INV .64± .1 .32± .2 .68± .1 .27± .2 .42± .2 .38± .2 .63± .2 .56± .2
CH4 EXTRA .61± .2 .36± .2 .77± .1 .51± .2 .77± .2 .73± .1 .68± .1 .69± .1
SF6 .33± .2 .67± .1 .75± .2 .70± .2 – .34± .1 .83± .1 .81± .1
CH3CCl3 .97± .03 .97± .03 .95± .04 .96± .03 .95± .04 .96± .04 .95± .03 .94± .03

∗ ALT (Alert, Canada; 62◦ W, 82◦ N, 210 m), BRW (Point Barrow, Alaska, USA; 157◦ W, 71◦ N, 11 m), MLO (Mauna Loa Observatory, Hawaii, USA; 156◦ W, 20◦ N, 3397 m) and
SPO (South Pole Observatory, Antarctica; 25◦ W, 90◦ S, 2810 m) are managed under the NOAA cooperative network by the Global Monitoring Division, Earth System Research
Laboratory (GMD/ESRL) (Dlugokencky et al., 1998; Butler et al., 2004), and MHD (Mace Head, Ireland; 10◦ W, 53◦ N, 25 m), RPB (Ragged Point, Barbados; 59◦ W, 13◦ N,
45 m), SMO (Samoa, USA; 171◦ W, 14◦ S, 42 m) and CGO (Cape Grim, Australia; 145◦ E, 41◦ S, 94 m) sites are operated under the AGAGE network by the Massachusetts Institute
of Technology (MIT, USA), Scripps Institutions of Oceanography, University of California, San Diego (SIO/UCSD, USA), Commonwealth Scientific and Industrial Research
Organization (CSIRO, Australia), University of Bristol, UK and Georgia Institute of Technology, USA (Cunnold et al., 2002; Prinn et al., 2000)

gradients in the upper troposphere/lower stratosphere region.
A version of the TOMCAT/SLIMCAT model, which uses
isentropic coordinates in the stratosphere, produces stronger
tracer gradients and a more realistic Brewer Dobson circu-

lation than the p-coordinate version used here (e.g. Hos-
saini et al., 2010, and references therein). The “tropical
pipe” (Plumb, 1996) along the upward transport branch of
the Brewer-Dobson circulation appears more “leaky” in the
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Fig. 4. Time series of differences between observed and simulated annual mean CH4 in CH4 CTL scenario (top row), SF6 (middle row)
and CH3CCl3 (bottom row) at two selected sites: MLO (left column) and CGO (right column). Time series of annual mean values and
tropospheric model values, averaged over 1000–200 mb and all latitudes/longitudes, are shown in Figs. S18 and S19, respectively.

models than in the limb-viewing remote sensing observa-
tions by HALOE and ACE-FTS. As a result, the simu-
lated concentration isopleths appear flatter compared to the
observations with increasing latitudes in both hemispheres.
The CH4 meridional gradients between tropics (Eq–10◦ N)
and northern extratropics (20◦ N–30◦ N) are calculated to be
140± 72 ppb for the models and 225 ppb for HALOE in the
height range of 70–30 mb.

In the troposphere, vertical transport of the NH emission
varies between the models, most prominently in the tropical
region, where deep cumulus convection is prevalent. Table 3
shows mean vertical gradients and between model variabil-
ities in three broad latitude ranges. Model to model differ-

ences are much less distinct at the mid and high latitudes
than in the tropics for SF6, CH4 and CH3CCl3. However,
two main categories of models can be identified based on the
density of CH4 isopleths in the height range between 350
and 200 mb. The position and concentration gradient across
the tropopause differs considerably among models. These
model features are also present in the SF6 simulations sug-
gesting the predominant role of transport in the simulation of
the CH4 vertical distributions. The penetrative mass flux due
to deep cumulus convection in tropical latitudes is strongest
in ACTM and GEOS-Chem (low222Rn concentration differ-
ence of∼ 5.63× 10−21 between 850 and 200 mb), and rela-
tively weaker in NIES08i, PCTM and TOMCAT (high222Rn
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concentration difference> 12× 10−21). This is clearer from
the simulated222Rn distributions over the South Asian mon-
soon region at 70◦ E during boreal summer (Figs. S2 and S4).
It has been shown in Patra et al. (2009a), based on ACTM
simulations with and without cumulus parameterization, that
deep cumulus convective transport is the main cause for rapid
vertical transport of tracers to the upper troposphere (seen
as higher222Rn concentrations compared to the lower tropo-
sphere). Feng et al. (2011) showed that the online convection
scheme used in the TOMCAT runs for this study underesti-
mated the ECMWF archived convective mass fluxes espe-
cially in terms of the altitude extent of deep convection in
the tropics. The higher horizontal resolution versions of both
IMPACT and TM5 resulted in higher222Rn concentrations
in the middle-upper troposphere (i.e. smaller difference be-
tween 850 mb and 400/200 mb) compared to their respective
lower resolution simulations. This is suggesting that some
convective processes are being resolved in higher resolution
models that are not present in the lower resolution models.

3.2 Model-observation comparison of CH4, SF6 and
CH3CCl3 annual means: 1990–2007

Figure 4 shows the time series of annual mean concentra-
tion differences between simulated and observed CH4, SF6
and CH3CCl3 at two selected sites (MLO and CGO). First
SF6 is considered, which has no chemical loss (middle row).
Typical model behaviour is similar at all 8 sites (not shown).
For most models, the simulated concentrations divert from
the measurements by 0.2 ppt in 1995, after which differences
remain at that level. The offsets between models can be ex-
plained by initial values assumed by each models. Only AC-
CESS shows increasing differences in time until 2006. The
ACTM OH case, which uses EDGAR4.0 emissions without
scaling between 1988–2005, and 2005 emission for 2006 and
2007 and produces a slower increase in the model concentra-
tion compared to observations after 2000. This suggests that
the global total emissions estimated by Levin et al. (2010)
and later confirmed by Rigby et al. (2010) are adequate also
for independent state-of-the-art transport models.

The CH3CCl3 simulations are of an intermediate level
of uncertainty, as this species is emitted to the atmosphere
by a relatively well quantified industrial use as a solvent.
However, uncertainties remain for its loss by reaction with
OH in the troposphere, photolysis in the stratosphere and
the rate of STE. Until 1990, CH3CCl3 emissions were in-
creasing, followed by near-exponential decrease due to strin-
gent restriction of its production/use by the Montreal Pro-
tocol (WMO/SAOD, 2003). The lifetimes of CH3CCl3 due
to photochemical removal is much longer in the stratosphere
(∼28.6 yr) than in the troposphere (∼5.8 yr) (estimates from
ACTM simulated loss rates at model grids; similar esti-
mates of lifetimes using TM51×1 are 37.6 and 5.8 yr, re-
spectively). Thus the troposphere to stratosphere transport
plays a minor role in the global total budget of CH3CCl3

after the late 1990s, because the concentration gradients
across the tropopause reduced to less than 10 ppt (ref. Ta-
ble 3). Although these lifetimes in the stratosphere and
troposphere are within the range of independent estimates,
38+15

−11 and 6+0.5
−0.4 yr, respectively (Prinn et al., 2005), both

the mean values are lower for ACTM. Despite the fact that
the models were initialized using the same concentration
at 1 January 1988, significant differences in the simulated
concentrations are found already for 1990, after two years
of simulation. The established model-measurement differ-
ences in 1990 persist until the end of the simulations (LMDZ
CH3CCl3 being the only outlier) even though the CH3CCl3
concentrations become very small towards 2007. Given the
CH3CCl3 lifetime of less than 5 yr, these differences are
caused by differences in transport and removal rather than
the initialization.

CH4 is the most complicated species considered in the
TransCom-CH4 experiment, because the CH4 surface emis-
sions and effect of STE are less certain than for CH3CCl3.
Generally, the models that simulate lower CH3CCl3 concen-
trations compared to the multi-model mean, also yield lower
CH4 concentrations (such as MOZART, CCAM). For ex-
ample, the high and low-resolution TM5 simulations show
the highest concentrations of both CH4 and CH3CCl3 at
MLO. However, it is interesting to note that GEOS-Chem
(with TransCom OH) calculates the lowest CH4 concentra-
tions among all models, while the simulated CH3CCl3 levels
are not distinctly different. LMDZ is among the models that
most strongly underestimate the observed level of CH3CCl3,
whereas the opposite is true for CH4 (Fig. 4). These contrast-
ing behaviors among models for various CH4 and CH3CCl3
simulations clearly suggest that CH4 loss due to the reaction
with OH in the troposphere is not the only control on the
CH4 budget differences between models and that other fac-
tors such as transport differences also play a role (details in
Sects. 3.3 and 3.4).

3.2.1 Seasonal cycles

Figure 5 shows model to measurement comparisons of the
seasonal cycles of CH4, SF6 and CH3CCl3 at three selected
sites (MLO, SMO and CGO) for the period 2002–2003.
These sites have been selected because they are at large
distances from the continental emissions for each of these
species. To highlight differences in seasonality, approximate
linear trends and offsets corresponding to the period 2002–
2003 have been subtracted from the monthly-mean values.
All models capture the salient features in the seasonal cycles
at very high statistical significance (ref. Table 4 for correla-
tion coefficients at 8 sites), except for SF6 at MLO, where
the measurements show unusual fluctuations and a large data
gap during 2002. Even for the years with dense data cover-
age (2005–2006), low average correlation coefficients (r) of
0.3 for the SF6 seasonal cycles at MLO are obtained due to
a very small seasonal cycle of less than 0.04 ppt. In contrast,
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Fig. 5. Comparisons of observed and simulated seasonal cycles of CH4 in CH4 CTL scenario (top row), SF6 (middle row) and CH3CCl3
(bottom row) at 3 selected sites, MLO (left panel), SMO (middle panel) and CGO (right panel).

the clear seasonalities (amplitude>0.04 ppt) at ALT, MHD,
SMO, CGO and SPO are well reproduced by the models
(r > 0.4; significant atP = 0.05 in two tailed Student’st-
test for 24 data points). The fact that the models are able to
reproduce the observed seasonal cycles indicates that even
though the signals are weak, they nevertheless provide use-
ful information for model validation. All models reproduce
the CH3CCl3 seasonal cycle fairly well at all 8 sites, both in
phase and amplitude (r > 0.8).

For CH4, the influence of the surface flux on the simu-
lated seasonal cycles can be studied using the 6 different
CH4 scenarios. The corresponding correlation coefficients,
listed in Table 4, suggest that the CH4 seasonal cycle de-
pends strongly on the implemented wetland and biomass
burning fluxes. The CH4 INV simulations consistently pro-

duce higher correlation coefficients at all the NH sites (ALT,
BRW, MHD, MLO and RPB), which was expected because
the atmospheric-CH4 inversion used data from these sites
for flux optimization. CH4 EXTRA results are next best in
comparison with measured seasonal cycles for the NH high
latitude sites. For any given tracer, the correlation coeffi-
cients are highest at remote SH sites, CGO and SPO, com-
pared to all other sites. The use of ACTMOH and GEOS-
ChemDOH or the higher horizontal resolution versions of
IMPACT 1× 1.25 and TM51× 1 do not always improve
the agreement between model and observations compared
to the default implementation. These results suggest a need
for improving our understanding of the CH4 flux seasonal-
ity in the Northern Hemisphere land regions, noting that the
OH loss is realistically represented as seen in the simulated
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Fig. 6. Comparisons of observed and simulated annual mean growth rates of CH4 in NH (top row; ALT, BRW and MHD average), tropics
(middle row; MLO RPB and SMO average) and SH (bottom row; CGO and SPO average) for two selected fluxes, CTL (left column) and
EXTRA (right column). Growth rate variabilities corresponding 4 other CH4 scenarios are given in Figs. S20 and S21.

CH3CCl3 seasonal cycles. Because ACCESS (blue line) was
not run with analyzed winds and temperature, the simulated
seasonal cycles are not as good as other models for CH4 and
SF6 highlighting the role of meteorology in simulating tracer
concentrations. The role of meteorology is less pronounced
for CH3CCl3 because the emissions are weak in the 2000s.
A more detailed analysis of seasonality at a larger number of
sites will be conducted in a future study.

3.2.2 Interannual variability (IAV)

We calculated growth rates for all tracers as the difference
between annual mean concentrations for two adjacent years.
The growth rate at January 2000 is shown as the difference
between 1999 and 2000 mean concentrations. The simu-
lated and observed SF6 growth rates (not shown) decreased
from∼0.25 ppt yr−1 in 1997 to∼0.2 ppt yr−1 in 2000. After-
wards, the growth rate steadily increased to∼0.25 ppt yr−1

in 2006 (please refer to Table 4 for correlation coefficients;
r ∼ 0.7 for 5 sites). The length of time series considered for
the correlation calculation of the IAVs is 1990–2007 for CH4

Atmos. Chem. Phys., 11, 12813–12837, 2011 www.atmos-chem-phys.net/11/12813/2011/



P. K. Patra et al.: TransCom model simulations of CH4 and related species 12827

(except for CH4 WL BB, which has 7 yr of IAV, 1994–2000)
and CH3CCl3, and 1996–2007 for SF6 (the period when ob-
servations are available). The correlation coefficients greater
than 0.44 and 0.53 are statistically significant atP = 0.05
for 18 and 12 data points, respectively. Average CH3CCl3
growth rates (not shown) hovered around 0 to 5,−12 to
−17 and∼ −2.5 ppt yr−1 during 1991, 1997 and 2007, re-
spectively, with gradual changes in between. These temporal
variations are well simulated by all models (r > 0.9). Be-
cause both SF6 and CH3CCl3 emissions are of purely anthro-
pogenic origin, their production, consumption and release to
the atmosphere vary relatively smoothly in comparison to the
natural components of CH4 emissions.

Figure 6 shows the model-observation comparison of the
IAV in CH4 growth rates for three broad latitude regions: the
NH, tropics and SH corresponding to the CTL and EXTRA
emissions (refer to Figs. S20 and S21 for others). Averaged
observed CH4 growth rates for the 1990s are 5.25, 5.06 and
7.01 ppb yr−1 in the NH, tropics and SH, respectively. Al-
most no increase in concentration is observed for the 2000s
(except for 2007). Additionally, it can be seen that the IAVs
in the growth rate are higher at the NH sites compared to
the tropical and SH sites. Figure 6 shows that although the
CH4 CTL simulations capture the observed reduction in the
decadal average growth rates, the IAV is not well reproduced.
Most prominent is the 1997/1998 El Niño event (Langenfelds
et al., 2002). During this event the observations show an in-
crease, while the simulations show a decrease in the growth
rate. Interestingly, the CH4 CTL emission and OH concen-
tration (both without IAV) cannot explain this model behav-
ior, which is therefore attributed to the increased CH4+OH
reaction rate as modified by CH4 transport and temperature
in the model. This, in turn, is caused by the El Niño induced
higher air temperatures (Reaction R1), resulting in faster re-
moval of CH4 from the troposphere and thus a decrease in the
growth rate. Indeed, the 1998 CH4 CTL lifetime (9.82 yr) is
estimated to be the shortest among all simulation years.

As seen from Table 4, inclusion of biomass burning emis-
sion IAV (CH4 BB) improves the IAV model-observation
agreement at all sites compared to CH4 CTL. However,
when wetland emissions are included (CH4 WL BB), the
correlations tend to deteriorate. Compared to CH4 BB, only
CH4 EXTRA produces better model-observation agreement
for growth rates (Fig. 6, right panels). The wetland CH4
emission simulated by the VISIT ecosystem model included
in CH4 EXTRA displays a large positive anomaly on top
of the emissions from biomass burning during 1997/1998.
Combined, these emissions compensate for the extra CH4
loss due to higher air temperatures. As a consequence, these
emissions result in an excellent agreement with the growth
rates observed at the SH and NH sites (except that the simu-
lated tropical signal is a bit too strong in 1998). The IAV of
the multi-model average CH4 growth rate at BRW did not
correlate significantly with the observed IAV because this
site is located close to the Alaskan wetland region, and the

site representation error is large for the coastal sites in coarse
resolution global models (Patra et al., 2008).

The decreasing growth rate in the 1990s, near zero growth
rates in early 2000s and the reappearance of positive CH4
growth in the late 2000s have drawn considerable interests
for developing emission inventories. For example, Lamar-
que et al. (2010) suggested a decrease of CH4 emissions by
about 40 Tg CH4 from 1990 to 2000 for simulating the zero
CH4 growth rate in the early 2000s using the CAM-Chem
model. Their estimate is largely inconsistent with our re-
sults, which is suggesting that a steady state is achieved be-
tween CH4 chemical destruction and emissions during the
early 2000s (Dlugokencky et al., 2003). The EDGAR4.0
anthropogenic CH4 emission increase of∼4 Tg CH4 yr−1

during 2001–2007, synchronized with the Chinese economic
growth, produces inconsistencies between observed and sim-
ulated growth rates during 2003–2007 (thus the lowest cor-
relation coefficients for the growth rate IAVs in Table 4; see
also Fig. S20). This indicates that forward simulations using
multiple forward transport models are useful for the verifica-
tion of emission inventories.

3.3 Interhemispheric gradients and exchange times

Figure 7 shows the concentration gradients between two NH
sites and two SH sites obtained using annual mean observed
and modeled time series. All models except for the TM5s,
simulate the observed SF6 IH gradient within the mea-
surement accuracy of± 0.057 ppt (

√
2× measurement preci-

sion). These gradients translate to an average IH exchange
time (τex) of 1.39± 0.18 yr (for all models and years), which
is an indication of close model-model agreement (Fig. 8).
This model-model spread is much smaller compared to the
model pool of the 1990s (Denning et al., 1999), which gave
τex range of 0.8–2.0 yr. In this intercomparison, theτex range
between models is 0.62± 0.06 yr compared to 1.2 yr in the
TransCom experiment during the 1990s. The averageτex
of 1.39 yr is in excellent agreement with the estimates of
1.3 yr (Geller et al., 1997) and 1.5 yr (Levin and Hesshaimer,
1996), derived using measured SF6 time series. The underes-
timation by ACTM OH version is due to smaller SF6 emis-
sions (note: this version used EDGAR4.0 without scaling),
highlighting the role of the emission strength in the forward
model simulations.

A tendency towards faster IH exchange rate as calculated
from Eq. (4) is seen for both the observations and the simula-
tions (a decrease in exchange time by about 0.2 and 0.15 yr,
respectively) between 1996–1999 and 2004–2007. A de-
crease inτex could have large implications for estimating
fluxes of long-lived species by inverse modelling, especially
for the trends in hemispheric emissions and sinks ratio. To
investigate the influence of possible shifts in the global SF6
emission distribution (I. Levin, personal communication, Oc-
tober 2011) sensitivity tests were performed in ACTM us-
ing three emission scenarios: (1) same as in TransCom-CH4
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Fig. 7. Interhemispheric gradients (IHGs) for CH4 CTL, SF6 and
CH3CCl3 concentrations between the NH (BRW, MLO) and SH
(CGO, SPO) sites. The values at CGO (AGAGE) are adjusted to
NOAA scales by adding an offset of 0.02 ppt for SF6, and multi-
plied by 1.0003 and 1.0333 for CH4 and MCF, respectively (see
text in Sect. 2.4 for further details). Please note that adjustment
of the AGAGE data to NOAA scale is made just for convenience.
These 4 sites are chosen here because their data coverage is most
complete during 1990–2007. Haley Bay (75.58◦ S, 26.5◦ W, 10 m)
site is chosen for PCTM due to no SPO data in all files. Inset shows
expanded y-axis view of MCF for the 2000–2007 period.

protocol (EDGAR4.0/Levin), (2) the EDGAR4.0 emis-
sion distribution corresponding to 2000, but global totals
scaled to Levin et al. (2010) (EDGARY2000/Levin), and
(3) constant emissions from EDGAR4.0 for the year 2000
(EDGAR Y2000). Figure 9a shows the trends in SF6 emis-
sions within three broad latitude bands. The emissions in
the NH mid-high latitudes (circles) remained fairly constant

Fig. 8. IH exchange time (τex) estimated using the measured and
simulated time series of average SF6 in NH (BRW, MLO) and SH
(CGO, SPO) by employing Eq. (4).
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Fig. 9. SF6 emissions in three broad latitude bands (a, top panel),
and τex (b, bottom panel) estimated using ACTM simulated SF6
time series for three different emission scenarios. An offset is ap-
plied to eachτex time series for a common value of 1.39 yr in 1996.

(within 14 %) in EDGAR4.0/Levin scenario, while the emis-
sions from the NH tropical latitudes (triangles) increased by
more than 100 % during 1996 to 2007. The estimatedτex
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using three emission scenarios are shown in Fig. 9b. These
results clearly suggest that the decrease inτex is caused by
the trends in the SF6 emission distribution rather than inter-
hemispheric transport. The decrease inτex becomes an or-
der of magnitude smaller as well as statistically insignificant
(r = −0.34,N = 12) when SF6 emissions were kept constant
(EDGAR Y2000). The decrease inτex remained significant
for scenario EDGARY2000/Levin (red square/line). This is
probably because the SF6 IH gradients do not reach steady
state, since the emissions decreased during 1995–1998 and
increase thereafter till 2008 (Fig. 2c), even though theEn

Es
ra-

tio was fixed at 36.9, corresponding to the year 2000. Our
results indicate that the time evolution of the SF6 emissions
should be introduced at a higher spatial resolution (than the
presently used 2-box model), when calculatingτex.

All three long-lived species show a similar relationship for
the IH gradient: the model that produces a larger (smaller)
SF6 IH gradient generally also produces a larger (smaller) IH
gradients for CH3CCl3 and CH4 in comparison with the ob-
servations (Fig. 10). The intriguing exception is MOZART,
which exhibits an excellent match for SF6 IH gradient, but
produces one of the largest CH4 IH gradients (127 ppb com-
pared to an observed value of 101 ppb) and one of the small-
est CH3CCl3 gradients (0.13 ppt) during 2003–2007. Similar
contrasting behaviour is also seen for several other models at
lesser distinction, e.g. GEOS-ChemDOH, NIES-08i lie be-
low the fitted line for CH4, but lie above the fitted line for
CH3CCl3. The CH4 IH gradients are best reproduced using
the CH4 INV emissions: deviations are within 5 ppb for 7
models (Fig. 10). Taking into account the IH gradient of all
three species, TM5/CCAM, ACTM/IMPACT1×1/PCTM
and LMDZ/NIES-08 showed systematically higher, similar
and lower IH gradients, respectively, compared to the obser-
vations.

Two models submitted simulations using different OH,
which can be used to further investigate the sensitivity of
the simulated CH4 and CH3CCl3 IH gradients to the IH dif-
ference in OH. The NH/SH ratio of hemispheric total tro-
pospheric OH are (1) 1.32 for ACTMOH and (2) 1.11 for
GEOS-ChemDOH, while that (Spivakovsky et al., 2000)
used in ACTM is 0.99. The observed CH4 IH gradient
is 100.97 ppb, while the simulated gradients from ACTM
and ACTM OH are 99.99 and 87.45 ppb, respectively. In
order to simulate the observed CH4 IH gradient precisely,
the NH/SH OH ratio for ACTM would need to be 0.97
[= 0.99+ (1.32−0.99)× (99.99−100.97)

(99.99−87.45) ]. This is close to the
NH/SH OH ratio derived by Spivakovsky et al. (2000). Note
also that the ACTM simulations of both CH3CCl3 and SF6
agree very well with the observations. Similarly, to simu-
late the observed CH4 IH gradient, the NH/SH OH ratio for
GEOS-Chem model should be 1.15 [= 0.99+(1.11−0.99)×
(107.53−100.97)
(107.53−102.65) ]. Both GEOS-Chem model versions simu-
late greater IH gradients also for CH3CCl3, a species that
has been used for benchmarking tropospheric OH concen-
trations and distributions. However, the GEOS-Chem sim-
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Fig. 10. Correlation between IH gradients of SF6 with that of CH4
and CH3CCl3 are depicted, using average values for the period
2003–2007 and for 4 sites as in Fig. 7. ACTMOH is excluded
from the linear fitting because the SF6 emissions are not as per the
protocol.

ulated SF6 IH gradient agrees very well with the observed
value. Given the small number of alternative OH distribu-
tions in models, and the remaining uncertainties in CH4, SF6
and CH3CCl3 emissions, our best judgement at the moment
is that we cannot falsify the NH/SH gradient (0.99) derived
by Spivakovsky et al. (2000).

3.4 Photochemical removal of CH4 and the role of
transport

The calculated photochemical loss of CH4 varies between
490 and 509 Tg CH4 yr−1 during the first eight years (1992–
1999), and between 497 and 513 Tg CH4 yr−1 during the
last eight years (2000–2007) of the simulation. Figure 11a
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ChemDOH are excluded from this analysis as those models used
different OH fields.

suggests that the eight-years averaged growth rates at the
surface sites for the different models are, as expected, in-
versely proportional to the calculated photochemical destruc-
tion. However, this relationship appears loose, particularly
for 2000–2007, when the models approach steady state (cor-
relation coefficient,r = −0.42 for all models, but increase to
−0.82 and−0.61 for 1990s and 2000s, respectively, by ex-
cluding NIES-08i). Possible explanations are investigated in
Fig. 11b, using the vertical gradients in the equatorial lower
stratosphere (CH4 at 100 mb – CH4 at 10 mb; zonal average
for 5◦ S–5◦ N latitudes). Models showing greater gradients
have slower Brewer-Dobson circulation, and thus stronger
trapping of CH4 in the troposphere, resulting in faster CH4
destruction and smaller growth rate because CH4 lifetime in
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Fig. 12. Time series of median (symbols) and ranges (broken
lines) of atmospheric lifetimes of CH4 (black) and CH3CCl3 (red).
Note that the mean CH4 lifetimes for EXTRA (9.96± 0.08 yr) and
CTL (9.99± 0.08 yr) fluxes agree within their interannual variabil-
ity. A comparison of CH3CCl3 lifetimes calculated using Eq. (5)
and gridded photochemical destruction rates is shown in Fig. S22
(ACTM only).

the troposphere is an order of magnitude shorter than that in
the stratosphere. Although these relationships are again quite
loose during the 1990s, as the models attain their steady state,
statistically significant correlations (r = −0.69) are found for
the period of 2000–2007 between the CH4 growth rates and
vertical gradients in the lower stratosphere. While the growth
rates decrease from the 1992–1999 period to the 2000–2007
period in all models, the modeled gradients remain remark-
ably constant. Based on this analysis we suggest that the
simulated concentration growth rates at the surface sites are
linked to the troposphere to stratosphere transport rate of
CH4.

Figure 12 shows the temporal variability in the estimated
lifetimes (Eq. 5) for CH4 CTL and CH3CCl3 (ref. Table 2 for
time-averaged model specific lifetimes). The median CH4
lifetime due to atmospheric loss processes (Reactions R1–
R3) is 9.99± 0.08 (1σ for interannual variability) years and
ranges from 9.50± 0.10 to 10.27± 0.14 yr for the differ-
ent models. Here it should be remembered that all, but
ACTM OH and GEOS-ChemDOH, models used the same
OH distribution. The median CH4 lifetime for 16 models
or model variants agrees well with the lifetime (10.0± 0.17)
estimated from the measured mean concentrations at 8-sites
(Eq. 5). This is because a close balance is achieved be-
tween the modeled atmospheric loss and net surface emis-
sions (513± 9 and 514± 14 Tg CH4 yr−1 for the 1990s and
2000s, respectively). The median CH3CCl3 lifetime due
to all loss processes (Reactions R4–R6) is estimated to
be 4.61± 0.13, 4.59± 0.18 and 4.62± 0.02 yr during the
1992–2007, 1992–1999 and 2000–2007, respectively. TM5
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simulates a lifetime of 4.87± 0.03 yr, which is close to the
estimates using the measured CH3CCl3 concentrations of
4.9± 0.3 yr (Prinn et al., 2005), 5.0 yr (WMO/SAOD, 2003)
or 4.94± 0.15 yr (this study based on 8 sites). All other mod-
els calculated a shorter lifetime, by an average value of 0.3 yr.
CAM, CCAM, LMDZ and MOZART calculate lifetimes of
4 yr or shorter. The interannual variation in the estimated
CH3CCl3 lifetimes during the 1990s is an order of magnitude
higher than that in the 2000s. We find up to 5 % variability
in the modeled CH3CCl3 lifetimes during 1992–1999, a pe-
riod with substantial emissions. During 2000–2007, when
the emissions of CH3CCl3 dropped significantly, less than
0.4 % variability is simulated. This implies that inversions
to estimate OH from CH3CCl3 observations are less uncer-
tain since 2000, a finding in good agreement with Montzka
et al. (2011).

4 Further work and data accessibility

For this analysis we used results of chemical tracer simu-
lations at only 8 selected sites with measurements of atmo-
spheric CH4, SF6 and CH3CCl3, which is a very small sub-
set of the 280 surface sites for which output is available.
In addition, vertical profiles of chemical tracers and several
meteorological parameters have been archived at 115 sites.
More analyses on the basis of the TransCom-CH4 simula-
tions are planned focusing on (1) CH4 vertical profiles mea-
sured using aircraft, (2) analysis of vertical column averaged
CH4 concentrations using TCCON observations, (3) using
increase, decrease and exponential decay of CH3CCl3 for
optimizing tropospheric OH abundance. We also welcome
use of this data set by the measurement community. In an ef-
fort towards ease of access, time series at a subset of surface
sites are archived at JAMSTEC (http://ebcrpa.jamstec.go.jp/
dav/prabir/transcom-ch4/sitesdata/). Information on how to
access the full dataset is available in the experimental pro-
tocol, archived on this website (http://transcom.project.asu.
edu/T4methane.php).

In addition to the site-specific data, gridded output at
monthly intervals at the model horizontal resolution at stan-
dard pressure levels are archived for the period 1990–2007.
Afternoon averages (12:00–15:00 LT – Local Time) at daily
intervals are also archived for the period 2001–2007. We
believe these sets of model output, their extension to recent
years, will be useful for comparing the model simulations
with satellite observations (SCIAMACHY, AIRS, GOSAT)
and aircraft observations (e.g. HIPPO – HIAPER Pole-to-
Pole Observations of carbon cycle and greenhouse gases
study, Wofsy et al., 2011).

5 Summary and conclusions

We analyzed concentration time series of CH4, CH3CCl3,
SF6 and222Rn simulated by 16 chemistry-transport models

as part of the TransCom-CH4 intercomparison experiment.
We focused the analysis on the model-to-model differences
in:

1. The vertical redistribution of tracers, based on222Rn
simulations and comparisons to CH4 satellite observa-
tions in the upper troposphere and lower stratosphere.

2. Large-scale interhemispheric (IH) transport, by compar-
ing modeled and observed IH gradients of SF6, CH4 and
CH3CCl3.

3. Simulated seasonal cycles, by comparing to observed
seasonal cycles at remote background stations.

4. Inter-annual variations in the simulated CH4 growth
rate, by focusing on the results of six different CH4
emission time-lines.

5. The role of removal by OH on the simulated CH4 and
CH3CCl3 concentrations.

The main conclusions can be summarized as follows:

i. Although the simulated zonal mean222Rn concentra-
tions agree between models, significant differences are
observed in regions of deep cumulus convection, e.g.
the south Asian summer monsoon domain. Unfortu-
nately, observational evidence to check the model be-
havior is lacking. Models also differ in the simulated
height of large troposphere-stratosphere concentration
gradients of CH4. Compared to CH4 satellite observa-
tions in the upper troposphere, most models appear to
be too diffusive around the tropical tropopause.

ii. The IH exchange time, calculated from the simulated
SF6 distributions, ranges from 1.79 to 1.17 yr (average
over 1996–2007) for the different models. The model-
average value of 1.39 yr is in close agreement with ear-
lier studies and observational evidence. Models that
show faster IH exchange for SF6, also exhibit faster ex-
change (smaller IH gradients) for CH4 and CH3CCl3.
This multi-tracer evidence provides clear directions for
the improvement of specific models. The IH exchange
time calculated from the simulated and observed SF6
time series suggest an acceleration of the IH exchange
in the 2000s compared to the 1990s. However, a sen-
sitivity study using 3 different SF6 emission scenarios
show that the acceleration is caused by an increased
share of SF6 emissions in the tropical land regions, com-
pared to the midlatitudes, of the NH as as well as non-
steady state IH gradients in SF6 concentrations. The
estimated IH exchange time remained constant over the
period of our analysis (1996–2007) for a time invariant
SF6 emission scenario.

iii. All models reproduce the observed seasonal cycles of
CH4 and CH3CCl3 at background sites very well. The
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simulated CH4 seasonal cycles depend on the destruc-
tion by reaction with OH, concealing the seasonality of
the underlying emissions. The simulated seasonal cy-
cles of CH4 are influenced by the photochemical de-
struction by OH: without destruction, the simulated sea-
sonal cycles would more strongly reflect the seasonal
cycles present in the emission scenarios. Two of the six
simulated CH4 scenarios (CH4 INV and CH4 EXTRA)
show a higher correlation with the observed seasonal
cycle.

iv. A set of six CH4 flux representations was used to inves-
tigate the role of specific processes in reproducing the
observed interannual variations in the CH4 growth rate.
The control emission case (CH4 CTL) without a sig-
nificant increase in anthropogenic emissions and no in-
terannual variability in natural emissions for the period
1990–2007 reproduces the declining growth rate in the
1990s, followed by the stabilization in the 2000s. Inclu-
sion of interannual variation in emissions from the wet-
land and forest fires (CH4 EXTRA) most successfully
simulates the observed interannual variations in CH4. It
was also suggested that the higher tropospheric temper-
atures during the 1997/1998 El Niño resulted in larger
CH4 destruction, whereas the observations clearly show
a rise in CH4 concentration. To match the observa-
tions, either enhanced emissions are required (as in
CH4 EXTRA), or less than average OH should have
been present in this period.

v. The simulation of CH3CCl3 is used to check the consis-
tency of the employed OH abundance and distribution.
Two models used an alternative OH field next to the
prescribed field. Generally, models that simulate a low
abundance of CH3CCl3 also simulate a low abundance
of CH4. However, there are exceptions, which indicates
that CH4 loss due to OH in the troposphere is not the
only cause of the modeled CH4 differences. Thus, hor-
izontal and vertical transport differences may also be
important.

vi. Further analysis reveals that the simulated CH4 growth
rate shows (weak) correlations with the modeled verti-
cal gradient in the equatorial lower stratosphere. This
suggests that differences in vertical mixing of the emis-
sions and in stratosphere-troposphere exchange are the
main causes of the model-to-model differences. Next to
the interhemispheric transport in models, this issue re-
quires further analysis, e.g. based on the archived model
output.

vii. Finally, the multi-model lifetime estimates for CH4 and
CH3CCl3 were found to be fairly constant over the sim-
ulation period with median values of 9.99± 0.08 and
4.61± 0.13 for the period 1992 to 2007. This under-
scores the fact that OH (assumed constant in the sim-
ulations) is the driving factor in the budgets of these

gases, and that transport and temperature (affecting
the reaction rate) differences play a smaller role. We
find net CH4 emissions to the atmosphere of 513± 9
and 514± 14 Tg CH4 yr−1 (soil sink subtracted) for the
1990s and 2000s, respectively, are consistent with the
atmospheric losses accounted for due to OH, O1D and
Cl in order to simulate CH4 concentrations and growth
rates at the surface sites.

Supplementary material related to this
article is available online at:
http://www.atmos-chem-phys.net/11/12813/2011/
acp-11-12813-2011-supplement.pdf.
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