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Abstract. Airborne in-situ observations of ClO in the trop-
ics were made during the TROCCINOX (Aracatuba, Brazil,
February 2005) and SCOUT-O3 (Darwin, Australia, Novem-
ber/December 2005) field campaigns. While during most
flights significant amounts of ClO (≈10–20 parts per trillion,
ppt) were present only in aged stratospheric air, instances of
enhanced ClO mixing ratios of up to 40 ppt – significantly ex-
ceeding those expected from gas phase chemistry – were ob-
served in air masses of a more tropospheric character. Most
of these observations are associated with low temperatures
or with the presence of cirrus clouds (often both), suggesting
that cirrus ice particles and/or liquid aerosol at low temper-
atures may promote significant heterogeneous chlorine acti-
vation in the tropical upper troposphere lower stratosphere
(UTLS). In two case studies, particularly high levels of ClO
observed were reproduced by chemistry simulations only un-
der the assumption that significant denoxification had oc-
curred in the observed air. However, to reproduce the ClO
observations in these simulations, O3 mixing ratios higher
than observed had to be assumed, and at least for one of
these flights, a significant denoxification is in contrast to the
observed NO levels, suggesting that the coupling of chlorine
and nitrogen compounds in the tropical UTLS may not be
completely understood.

Correspondence to:M. von Hobe
(m.von.hobe@fz-juelich.de)

1 Introduction

Ozone trends in the tropopause region play an important role
in the radiative forcing of the Earth’s climate system (Ra-
maswamy et al., 2001). The causes for decreasing ozone
trends in this region over the 1980s and 1990s have not yet
been fully understood (WMO, 2006; Logan, 1999). While
changes in transport in the lowermost stratosphere could ex-
plain at least part of the observed trend (Fusco and Salby,
1999; Salby and Callaghan, 2004; Hood and Soukharev,
2005), chemical ozone loss due to halogen chemistry is also
thought to play a significant role (Salawitch et al., 2005;
Solomon et al., 1997). Besides higher than previously sug-
gested and still slightly increasing amounts of bromine in
this region (Dorf et al., 2006), catalytic ozone destruction by
ClO produced as a result of heterogeneous chlorine activa-
tion on sulphate aerosol and on ice-particles in cirrus clouds
has been suggested (Borrmann et al., 1996, 1997; Bregman
et al., 2002; Keim et al., 1996; Solomon et al., 1997; Thorn-
ton et al., 2003, 2005).

Known reactions by which chlorine can be heteroge-
neously activated are

HCl+ClONO2 → Cl2+HNO3 (R1)

HCl+HOCl→ Cl2+H2O (R2)

H2O+ClONO2 → HOCl+HNO3 (R3)

HCl+HOBr→ H2O+BrCl (R4)

Reaction (R1) was first suggested by Solomon et al. (1986)
as a key process leading to the activation of the main chlo-
rine reservoir species HCl and ClONO2 and subsequent rapid
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ozone destruction in the Antarctic stratosphere in winter.
This suggestion prompted numerous laboratory studies and
the discovery of a number of further heterogeneous reactions
of importance to stratospheric chemistry (e.g. Reactions R2–
R4). Today, the reaction rates of heterogeneous reactions on
a variety of surfaces are reasonably well constrained through
laboratory studies (Sander et al., 2006). While polar strato-
spheric clouds (PSCs) occur in stratospheric air containing
significant amounts of chlorine reservoir species (in the parts
per billion, ppb range), the situation near the tropopause is
different. Tropospheric aerosol number densities decrease
sharply with altitude and water vapour saturation leading to
cirrus formation is most likely to be found in humid tro-
pospheric air masses, while sizeable amounts of inorganic
chlorine (Cly = HCl + ClONO2 + Cl + ClO + 2 ClOOCl +
OClO + HOCl) are present only in photochemically aged air
masses of stratospheric origin, which on average are com-
paratively dry. Thus it has been pointed out that hetero-
geneous chlorine activation plays a significant role only in
regions where wet tropospheric air masses are mixed with
stratospheric air (e.g. Solomon et al., 1997). At mid and
high latitudes, air with a significant stratospheric signature
(characterised by high abundance of ozone) is often found
below the thermal tropopause due to downward transport. In
the tropics, the Cly content inside high altitude cirrus clouds
coupled to local deep convection is expected to be low and
significant amounts of Cly that can be activated by hetero-
geneous reactions are thought to be present only at the in-
terface between the cloud and stratospheric air at the top
of the cloud (Solomon et al., 1997). However, the amount
of inorganic chlorine in the tropical upper troposphere and
lower stratosphere (UTLS) resulting from the decomposition
of very short lived species (VSLS) could be quite significant
(e.g. WMO, 2006; Laube et al., 2008; Mébarki et al., 2010).
This as well as the possibility of convective transport of inor-
ganic chlorine (HCl, ClO, sea salt) from the marine bound-
ary layer into the UTLS will be discussed in more detail in
Sect. 2.2 and in the context of our results in Sect. 3.

Cirrus clouds extending up to or above the tropopause are
most likely to be found in mid-latitudes (45 to 65◦) and in
the inner tropics (<10◦; Wang et al., 1996). The altitude of
the tropopause in these regions is very different: typically
10 to 12 km in mid latitudes and 15 to 17 km in the tropics.
Tropical Cirrus clouds are particularly widespread and often
optically thin (Wang et al., 1996). For mid and high latitudes
a number of observations of ClO near the tropopause exist
and have been linked to heterogeneous activation on cirrus or
background aerosol (Thornton et al., 2003; Borrmann et al.,
1997; Keim et al., 1996; Stroh et al., 2004). Here we present
observations of ClO from the TROCCINOX (Tropical Con-
vection, Cirrus, and Nitrogen Oxides Experiment) and the
SCOUT-O3 (Stratospheric-Climate links with emphasis On
the Upper Troposphere and lower stratosphere) aircraft cam-
paigns, which represent the first in-situ measurements of en-
hanced ClO in the UTLS in the tropics. In Sect. 3, we show

that in some cases the observed ClO mixing ratios cannot be
explained by gas phase chemistry alone, but are likely to be
caused by heterogeneous reactions on cold sulphate aerosol
or on cirrus ice particles. In particular, we investigate events
of concurrent or preceding cirrus cloud formation both be-
low the tropopause (TROCCINOX) and extending into the
lowermost stratosphere (SCOUT-O3). The parameters that
are most likely to influence the extent of heterogeneous chlo-
rine activation are investigated. Case studies for incidences
of unusually high ClO are presented, where observations are
compared to model simulations of heterogeneous activation
and chemical deactivation of active chlorine (Sect. 4).

2 Experiment

2.1 Field observations

Observations were made during two field campaigns with the
M55-Geophysica, a Russian research aircraft with a ceiling
altitude of about 21 km. In February 2005, the aircraft was
deployed from Araçatuba, Brazil, during the TROCCINOX
campaign. Observations inside cirrus clouds were made
during several flights in the altitude range 10–15 km (see
Huntrieser et al., 2007, and Konopka et al., 2007, for detailed
information on all flights and meteorological conditions).
During the SCOUT-O3 campaign in November/December
2005, flights were carried out from Darwin, Australia. Con-
vective storms reaching altitudes of up to 20 km were ob-
served, and cirrus clouds were found above the tropopause
at altitudes as high as 17 km (for information on flights and
meteorology see Brunner et al., 2009).

Chlorine monoxide (ClO) was measured by the HALOX
instrument situated in a pod underneath the left wing of the
Geophysica aircraft (von Hobe et al., 2005). It employs the
chemical conversion resonance fluorescence (CCRF) tech-
nique described by Brune et al. (1989). Through an inlet
optimised for radical measurements, ambient air is pulled
through two measurement ducts where periodically (10 or
20 s cycles) NO is added, converting ClO to Cl atoms that
are detected downstream by resonance fluorescence in the
vacuum UV. Accuracy is estimated to be≈16%, resulting
from uncertainties in the Cl atom VUV (118.9 nm) absorp-
tion coefficient (Schwab and Anderson, 1982), the scatter-
ing characteristics of the RF cell, the contribution of the
Lyman-α spectral line to the lamp output, and the ClO to Cl
chemical conversion efficiency. More critical for the analysis
presented below is precision, which is influenced largely by
the output and stability of the chlorine emission lamps and
the detector noise observed. These parameters varied dur-
ing both campaigns and were generally better during TROC-
CINOX. The signal-to-noise-ratio can be increased by inte-
grating the signal over several NO addition cycles, result-
ing in a better precision at the expense of time resolution.
For the data presented here, the number of cycles averaged
was determined for each flight – and in some cases flight
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segment – individually so that mixing ratios in the range of
only a few ppt present in the tropical UTLS could be de-
tected with reasonable precision (ranging from≈10 to 50%)
and a time resolution (2–10 min during TROCCINOX and 1–
30 min during SCOUT-O3) on the same order as individual
cirrus events observed by other instruments. HALOX also
measures BrO at ambient pressures below∼ 100 hPa (this
limit arises due to strong O2 absorption in the spectral re-
gion used for HALOX BrO measurements). However, for
the flights considered here, the BrO signal was always below
the detection limit of∼4 ppt.

Ozone measurements were performed by the FOZAN-
II (Fast Ozone Analyzer) instrument jointly developed and
operated by the Central Aerological Observatory, Russia,
and Institute of Atmospheric Science and Climate, Italy
(Ulanovsky et al., 2001; Yushkov et al., 1999). It has
two channels with solid state chemiluminescent sensors
and measures ozone in the concentration range of 10–
500 µg/m3(corresponding to about 50–2500 ppb for the pres-
sures and temperatures in the tropical UTLS) with a time
resolution of 1 s and a precision of<10% at ambient pres-
sures between 30 and 1000 hPa. FOZAN is equipped with
a high accuracy ozone generator for periodic calibration of
each channel every 15 min.

NOy and NO were determined by the SIOUX (Strato-
spheric observation unit for nitrogen oxides) instrument.
SIOUX includes two channels for detection of nitric oxides
(NO), total reactive nitrogen (NOy), and NOy contained in
particles larger than about 1 µm in diameter (Schmitt, 2003;
Voigt et al., 2005). The detection of NO is based on NO/O3-
chemiluminescence. Higher oxidized NOy species are re-
duced to NO using a heated Au converter and CO gas as
catalyst. Particle-phase NOy is detected by oversampling of
particles in a forward facing subisokinetic inlet and evapora-
tion and reduction of condensed NOy in the heated inlet and
Au converter (Voigt et al., 2007). The nominal accuracy and
precision of the gas-phase measurements are 10%/5% (NO)
and 15%/7% (NOy).

Evidence for cirrus clouds and potential recent hetero-
geneous processing is gathered from observations of wa-
ter vapour and particles. Total water, i.e. gas phase and
condensed phase, was determined with a measurement fre-
quency of 1 s−1 by the Fast In situ Stratospheric Hygrometer
(FISH) based on the Lyman-α photofragment fluorescence
technique. Details of the instrument and the calibration pro-
cedure are described in Zöger et al. (1999). To detect and
quantify water in the condensed phase, the saturation wa-
ter vapour at the given pressure and temperature was sub-
tracted from the total water (Schiller et al., 2008). The FISH
measurements made during the TROCCINOX and SCOUT-
O3 campaigns have recently been published by Schiller et
al. (2009).

In addition, gas phase water vapour was determined by the
Fluorescent Airborne Stratospheric Hygrometer (FLASH)
developed in Central Aerological Observatory (Sitnikov et

al., 2007). As is the FISH instrument, it is based on Lyman-
α photofragment fluorescence method. The inlet minimizes
the influence of the condensed water phase.

Further evidence for the presence and nature of particles
is obtained from the Multiwavelength Aerosol Scatterom-
eter (MAS) (Buontempo et al., 2006) observations of vol-
ume depolarisation at 532 nm. MAS is a laser backscatter
sonde measuring in situ aerosol optical parameters, by re-
vealing cross and direct polarisation backscattered light at
different wavelengths. During daytime, only the 532 nm Nd-
YAG-diode pumped laser has sufficient energy to detect the
backscattered signal.

Cloud particles in the size range 2.7 to 31 µm diameter
(for the relevant flight section on 19 November it is unclear
whether the upper size limit was 31 or 44 µm due to instru-
mental problems) were measured using a Forward Scattering
Spectrometer Probe (FSSP-100) as described by de Reus et
al. (2009).

Aerosol number densities in the size range from 6 nm up
to 1 µm particle diameter were measured by the Condensa-
tion Particle Counting System (COPAS) (Weigel et al., 2009)
consisting of an aerosol inlet and two dual-channel contin-
uous flow Condensation Particle Counters (CPCs). Three
channels are operated with distinct temperature differences
between the saturator and the condenser block, yielding
smallest detectable particle sizes of 6 nm, 11 nm, and 15 nm,
respectively, at ambient pressure of 70 hPa. The fourth chan-
nel is operated with an aerosol heating line for a determina-
tion of the number of non-volatile particles.

Temperature and pressure were measured using commer-
cial Rosemount sensors. Geolocation data were provided by
the M-55 avionic system.

2.2 Estimation of available inorganic chlorine (Cly)

Ideally, Cly is determined by measuring all inorganic chlo-
rine compounds, i.e. HCl, ClONO2, Cl2, ClO, OClO,
HOCl, and Cl2O2. Unfortunately, during TROCCINOX and
SCOUT-O3, ClO was the only measured inorganic chlorine
species. Thus Cly must be estimated differently. Here we
use correlations with other tracers, based on the fact that the
amount of Cly in a particular air mass increases with photo-
chemical aging, and is higher for stratospheric air than for
tropospheric air. A fairly accurate method for estimating
stratospheric Cly is provided by Woodbridge et al. (1995)
based on measurements of the most abundant organic chlo-
rine compounds. For TROCCINOX and SCOUT-O3, only
the long-lived CFC-11 and CFC-12, with respective lifetimes
of 45 and 100 years (WMO, 2006), were measured with
adequate time resolution by the HAGAR in-situ gas chro-
matograph. The fractional release of chlorine from these
two gases is small (<5%) for young air typically found in
the tropical UTLS (Laube et al., 2010), with a much larger
fraction of Cly coming from CH3Cl, CCl4 and very short
lived species (VSLS) in these air masses (Laube et al., 2008).
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Thus, a correlation with a shorter-lived tracer seems more ap-
propriate to estimate Cly.

Therefore, we estimate Cly from observed O3 adopting
the approach by Thornton et al. (2005). To derive a cor-
relation representative for the region and time of our mea-
surements, we used ACE-FTS (Atmospheric Chemistry Ex-
periment - Fourier Transform Spectrometer, Bernath et al.,
2005) satellite observations of O3 and HCl in the latitude
band 30◦ N–30◦ S made between November 2004 and Febru-
ary 2006. On average these data yield a robust linear correla-
tion (Fig. 1a) in fair agreement with O3 – HCl relationships
shown by Marcy et al. (2004). However, forx(O3) < 100 ppb
variability is high, withx(HCl) = 15± 52 ppt (mean and stan-
dard deviation), and the correlation tends to yield very low or
even negative HCl mixing ratios. Therefore,x(HCl) was set
constant to 27 ppt below 100 ppb O3 (27 ppt is used to avoid
a discontinuity at 100 ppb O3 where the correlation yields
27 ppt). This value is in excellent agreement with balloon
borne HCl observations for typical background conditions
in the tropical UTLS (Ḿebarki et al., 2010). Using ACE-
FTS measurements of a large number of inorganic and or-
ganic chlorine containing trace gases in the tropics averaged
over the period of February 2004 to January 2005 (Nassar et
al., 2006), a relationship betweenx(HCl) andx(Cly) is es-
tablished (Fig. 1b). Combining the two correlations yields
x(Cly) = 8.3×10−4 x(O3) – 0.033 ppb forx(O3) > 100 ppb,
and x(Cly) = 50 ppt for x(O3) < 100 ppb. This compares
well with mid latitude observations (Avallone et al., 1993),
where x(Cly) ≈ 0.001 x(O3). Obviously, the uncertainty
in this relationship is rather large, particularly for air with
x(O3) < 100 ppb (Fig. 1a), where both measurement uncer-
tainties and real relative variability are greatest. In par-
ticular, the high scatter in the “low-ozone” ACE-FTS HCl
data may partly originate from local variable sources of Cly.
These may include very short lived halogenated substances
(VSLS) as well as inorganic chlorine species. For the VSLS,
Laube et al. (2008) measured 47.1± 5.7 ppt Cl in the tropical
tropopause layer (TTL), in agreement with a range of 52–
60 ppt for the estimated tropical upper tropospheric mixing
ratio given in WMO (2006). For typical background condi-
tions in the TTL, an upper limit for HCl of 20–30 ppt has
been determined by Ḿebarki et al. (2010). An additional
33± 11 ppt Cl have been suggested to be present in the form
of phosgene (COCl2), a reasonably stable inorganic interme-
diate of VSLS degradation (Fu et al., 2007).

Taking the sum of inorganic chlorine and VSLS in the
tropical upper troposphere, and judging from the range of
scatter in Fig. 1a,x(Cly) seems unlikely to exceed≈150 ppt
in tropospheric air (x(O3) <100 ppb), which, as will be
shown below, is clearly too low to explain some of the ob-
servations of enhanced ClO by pure gas phase chemistry. A
possible role of locally enhancedx(Cly) due to rapid con-
vective transport of inorganic chlorine compounds (e.g. HCl,
ClO, sea salt) directly from the marine boundary layer will
also be discussed in Sect. 3.

Fig. 1. Correlations used to estimate Cly from O3. (a) Correlation
of HCl vs. O3 based on ACE-FTS satellite observations (Version
2.2-update) in the latitude band 30◦ N–30◦ S between November
2004 and February 2006 (black symbols) averaged in 50 ppb O3
bins (red symbols with 1σ -error bars for HCl and O3). (b) Corre-
lation of Cly vs. HCl based on the tropical (30◦ N–30◦ S) chlorine
inventory (based on ACE-FTS measurements of a large number of
inorganic and organic chlorine containing trace gases from Febru-
ary 2004–January 2005) recently published by Nassar et al. (2006).

2.3 CLaMS modelling studies

The Chemical Lagrangian Model of the Stratosphere
(CLaMS) (Konopka et al., 2004; McKenna et al., 2002a,
b) is a hierarchy of models ranging from a box model to
a 3-D Chemistry Transport Model (CTM) based on a La-
grangian transport concept in which the chemical evolution
within individual air parcels is simulated along their trajecto-
ries, which are determined from ECMWF temperature data
and wind fields. For this study the CLaMS modules are used
in three different modes:

– CLaMS ST: the stationary mode with no transport and
no mixing, where the air parcels stay at constant loca-
tion and the chemical composition is influenced only by
the diurnal photochemical cycle. This mode is used to
derive typical noontime ClO mixing ratios and chlorine
activation.
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– CLaMS CTM: the 3-D CTM mode, in which advection
and mixing are calculated. No detailed chemistry is cal-
culated for simulations in the CTM mode. The focus
of this simulation is on water vapour and the develop-
ment of ice particles that form cirrus clouds. For this
purpose, a novel CLaMS module to estimate Ice Wa-
ter Content was employed. This module computes the
conversion between gas phase water and ice water uti-
lizing a temperature-dependent value for saturation over
ice derived from freezing measurements in a simula-
tion chamber (Gensch et al., 2008; Krämer et al., 2009;
Möhler et al., 2005). Ice crystal number densities are
parameterised as described in these references.

– CLaMS BT: the back-trajectory mode, in which the full
photochemistry is simulated along trajectories that end
on selected points on the flight path. This mode is used
for the case studies in this paper.

2.3.1 Estimation of typical noontime chlorine activation

We estimate typical noontime ClO mixing ratios – with and
without heterogeneous activation – using the stationary box
model simulation CLaMSST for the Darwin location of
13◦ S/131◦ E (for simplicity, we used this location for both
campaigns in CLaMSST) and different O3 mixing ratios
from 1 to 1300 ppb (the O3 mixing ratio was reset to its
initial value after each diurnal cycle, as otherwise O3 ac-
cumulated significantly over the course of the simulation).
To approximately represent the typical conditions encoun-
tered during TROCCINOX and SCOUT-O3, temperature,
pressure, water vapour, and aerosol number densities were
initialized from their relationship with ozone averaged over
all relevant flights (Fig. 2a, b, d, e). NOy, which plays a
critical role for chlorine partitioning, was initialised using a
midlatitude correlation from Michelson et al. (1998), which
fits the NOy and O3 observations made during TROCCINOX
and SCOUT-O3 better than the tropical correlation from the
same paper (Fig. 2c). This is probably caused by the fact that
only a subset of flights during TROCCINOX and SCOUT-O3
were performed in tropical air masses (Brunner et al., 2009;
Huntrieser et al., 2007). Cly was initialised as a function of
O3 as described in Sect. 2.2, with HCl being the only inor-
ganic chlorine species present at the start of the model run.
The simulation was run until the midday chlorine partitioning
had reached equilibrium for all conditions (up to 30 iterative
1-day-cycles).

For heterogeneous chemistry in these simulations, ice for-
mation was disabled and only reactions on liquid aerosol
were simulated (this was done only for CLaMSST; ice
formation and reactions on ice were allowed in the
CLaMS CTM and CLaMSBT simulations, cf. below).
Although unrealistic at low temperatures (ice formation is
likely and often observed below≈195 K), this simplification
does not significantly affect heterogeneous activation rates,

Fig. 2. Relationship of(a) pressure,(b) temperature,(c) x(NOy),
(d) total water and(e) aerosol number densities with O3 observed
during TROCCINOX (green symbols) and SCOUT-O3 (red sym-
bols), used to initialise the CLaMSST simulation to estimate typi-
cal noontime Cl activation. Best fit relationships (lines) were deter-
mined for the measured data except forx(NOy) in panel(c), where
correlations from Michelson et al. (1998) are shown.

because reactions 1 to 3 on liquid aerosol have a strong nega-
tive temperature dependence and reaction probabilitiesγ be-
low 195 K are comparable to those on ice surfaces for reac-
tions 1 and 2 (Zhang et al., 1994; Hanson et al., 1994; Shi et
al., 2001).

2.3.2 Simulation of cirrus occurrence

Gas phase water in CLaMSCTM runs is initialised at the
beginning of each simulation utilizing the specific humid-
ity taken from ECMWF data. Boundaries are updated every
CLaMS time step from ECMWF data as well. The formation
of ice is parameterised either by using a conservative fixed
value for saturation over ice of 100% (like used by ECMWF
until September 2006) or a temperature dependent parame-
terisation for heterogeneous freezing (Gensch et al., 2008;
Krämer et al., 2008; M̈ohler et al., 2005). This parameter-
isation results in saturation values between 120 and 140%
in the 180 to 230 K temperature range. Water vapour with
values above these saturation levels is removed from the gas
phase and added to the ice water contentx(H2O)cond. Water
vapour and ice water content are transported and mixed like
any other tracer or chemical species. Evaporation at 100%
saturation and sedimentation of ice are considered, the latter
by assuming a uniform particle density and size distribution,
thus parameterizing processes like re- and de-hydration.
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2.3.3 Individual case study simulations

For the case studies presented in Sect. 4, simulations using
the ClaMSBT mode were performed along 10-day-back-
trajectories from locations along the flight path where sig-
nificant Cl-activation was observed. Observed temperatures
were significantly colder than ECMWF temperatures. An
offset was determined as the difference between observed
temperature and ECMWF at the locations of observations
and then subtracted for each air parcel individually from
the temperatures along the whole trajectory. The offset
varied from trajectory to trajectory, with average values of
−3.3± 1.2 K (1 sigma) for all points of the 19 November
flight and−1.4± 1.9 K (1 sigma) for the 30 November flight.
The temperature offsets for the cases shown were−2.9 K and
−2.1 K, respectively.

Consistent with the above estimate,x(Cly) was initialised
to be 50 ppt in the form of HCl. Total H2O was initialised
so that the observed total water measured by FISH at the
end of the simulation is reasonably well reproduced. The
high values of 10 and 30 ppm and more are not unrealis-
tic given the more tropospheric character of the air masses
and the presence of ice particles expected to lead to consid-
erable dehydration over the course of the simulations. The
latter is supported by the CLaMSCTM simulations. A sig-
nificantly lower initial H2O mixing ratio in the CLaMSBT
runs would significantly reduce particle formation. SIOUX
observations (510 ppt) were used to initialisex(NOy). Ozone
was initialised from FOZAN observations (≈50 ppb), but it
was also varied for the sensitivity studies. Bry (= Br + BrO
+ HBr + BrONO2 + BrCl) was set to 1 ppt, but also sensi-
tivity studies with more Bry were performed. The remaining
species were initialised from the Mainz 2-D model (Grooß et
al., 1998).

Formation of and reactions on particles were treated by
the CLaMS heterogeneous chemistry module that has been
developed for reactions on stratospheric particles (McKenna
et al., 2002a). To account for the different conditions in the
tropical UTLS, the following adjustments were made:

– As in the stratosphere, the heterogeneous reactions were
allowed to occur on ice and interstitial sulphate aerosol.
Both particle types allow uptake of HNO3. The forma-
tion threshold for ice particles was parameterised ac-
cording to freezing experiments in the AIDA chamber
for coated soot particles as condensation nuclei (Gensch
et al., 2008; Kr̈amer et al., 2009; M̈ohler et al., 2005).
These experiments resulted in a temperature-dependent
threshold of around 50% super-saturation for the ob-
served temperatures.

– The interstitial sulphate aerosol was initialised with
0.1 ppb H2SO4 gas phase equivalent and an aerosol
number density of 300 cm−1. In contrast to the strato-
spheric code, a typical ice particle radius of 10 µm
(Krämer et al., 2009) was defined and from that the

particle number density (order of magnitude: 0.1 cm−3)

was calculated using the steady statex(H2O)cond.

– Dehydration of the air due to particle sedimentation is
simulated by a simple parameterisation that is linked to
the particle settling velocity (Grooß et al., 2002). The
characteristic height parameter was adjusted to 3.5 km
such that the observed total H2O mixing ratio by FISH
was reached towards the end of the simulation.

3 Results

Figure 3 shows that, during both campaigns, ClO generally
increased together with ozone. During most flights, elevated
ClO mixing ratios (≈10–20 ppt) are found only in air masses
with O3 mixing ratios higher than≈300 ppb, i.e. contain-
ing any significant fraction of aged stratospheric air. This is
consistent with the expected dependence of ClO on photo-
chemical processing and available Cly: mixing ratios found
in stratospheric air did not significantly exceed typical noon-
time ClO levels expected from the known gas phase chem-
istry, which were estimated by the CLaMSST simulations
for gas-phase only and are represented by the black line in
Fig. 3, with the dark grey shading representing uncertainties
due to time of day and temperature. Because of the strong
correlation of available Cly with ozone, the observations of
significant ClO mixing ratio in these more stratospheric air
masses do not represent a high degree of chlorine activation
(Fig. 4).

From the CLaMSST gas phase simulations, ClO is ex-
pected to remain below≈2 ppt in air masses with a sig-
nificant tropospheric fraction (x(O3) < 300 ppb) in agree-
ment with a large number of ClO observations at or below
the HALOX detection limit. However, during a number of
flights, significantly enhanced mixing ratios of up to 40 ppt
ClO were found, exceeding values expected for gas phase
chemistry by about an order of magnitude. Only if het-
erogeneous chemistry is included in the CLaMSST simu-
lations does the range of simulated noontime ClO mixing
ratios – marked by the blue shaded area in Fig. 3 – corre-
spond reasonably well to the high values that were sometimes
observed, suggesting that heterogeneous reactions caused
substantial production of active chlorine in the TTL. This
seems quite realistic, because the low temperatures preva-
lent in the TTL will lead to relatively high heterogeneous
reaction rates. Indeed, the highest degree of chlorine activa-
tion – given by thex(ClO)/x(Cly) ratio following Thornton et
al. (2003) – was found in air masses with low ozone but also
very low temperatures (Fig. 4), where heterogeneous reac-
tions are most likely to play a relevant role. However, several
incidences of enhancedx(ClO)/x(Cly) ratios were also ob-
served at higher temperatures (Fig. 4) where heterogeneous
activation may not be expected. To study this in more de-
tail, we investigated the correspondence of Cl activation with
indicators or preconditions for cirrus/ice particle presence
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Fig. 3. Relation between ClO and Ozone in the tropical UTLS.
Symbols represent HALOX measurements made during TROC-
CINOX and SCOUT-O3 field campaigns with error bars repre-
senting combined uncertainties from accuracy and precision. The
black line shows ClO mixing ratios expected at local noon based
on CLaMSST box-model simulations without heterogeneous reac-
tions included; the range of values due to uncertainties in the Cly-
O3 correlation and temperature is shown in dark grey. ClO mixing
ratios observed at times significantly before or after local noon are
expected to fall below this line as indicated by the light grey area.
Blue shading indicates the range of ClO predicted with heteroge-
neous chemistry included; the upper limit is defined by the simula-
tion with highest Cly (Fig. 1) and lowest temperatures (Fig. 2b).

other than just the observed temperature. In the top panel
of Fig. 5, the ClO data are marked simultaneous measure-
ments of aerosol depolarization (MAS) and ice water con-
tent (FISH) as clear indicators for cirrus clouds encountered
in-flight. Simulations of ice water content and temperature
on back trajectories in the CLaMSCTM mode provide an
indication for potential recent cirrus formation. This is dis-
played in the middle panel and bottom panels of Fig. 5 re-
spectively. In total there are 15 incidences of enhanced ClO
with x(ClO)/x(Cly) ≥ 0.15, all of which are linked to either
temperatures<195 K and/or the occurrence of cirrus clouds
during or preceding the flight. This is a strong indication
that elevated ClO mixing ratios observed during TROCCI-
NOX and SCOUT-O3 were caused by heterogeneous chlo-
rine activation proceeding on cirrus ice particles and/or back-
ground aerosol at low temperatures. Transport of substan-
tial amounts of ClO into the TTL from the stratosphere can
be ruled out because this would also lead to an increase in
x(O3). Substantial mixing ratios of several hundred ppt in-
organic chlorine have been observed in the marine boundary
layer (Pszenny et al., 1993), but the supposition of rapid
transport to the TTL seems unwarranted because of loss by
wet deposition (e.g. Crutzen and Lawrence, 2000; Mari et
al., 2000). A contribution of chlorine from sea salt aerosol

Fig. 4. Dependence of ClO/Cly on temperature and O3 at time of
observation. X(ClO)/X(Cly) is calculated from HALOX ClO ob-
servations and Cly estimates as described in Sect. 2.1, so uncer-
tainties in this quantity will be rather large. Nevertheless, observed
enhancements compared to the typical gas phase ClO/Cly ratios are
significant for the majority of data points.

Fig. 5. ClO/Cly ratios as a function of O3 mixing ratio and charac-
terization of the “heterogeneous chemistry potential”. Top panel:
ice water content (colour code; grey: [H2O]cond= 0, black: no
data) and volume depolarisation (symbol size; N/M: not measured)
as proxies for cirrus particles; middle panel: integrated ice wa-
ter content (colour code) and time with ice present (symbol size;
N/M: not measured) simulated on 5 day back trajectories to es-
timate the extent of cirrus occurrence preceding the flights; bot-
tom panel: mean ECMWF temperatures for 2 day back trajectories
(colour code) and time atT < 195 K (symbol size). For uncertain-
ties inX(ClO)/X(Cly) cf. caption to Fig. 4.

also seems unlikely because sea salt is efficiently removed by
convective cloud processing before reaching the TTL (Froyd
et al., 2009) and was consequently found to be absent in
residual particles from evaporated high altitude subvisible
cirrus ice crystals in extensive measurements made during
the CR-AVE campaign (Froyd et al., 2010).

For TROCCINOX and SCOUT-O3, neither observations
(e.g. tracers, water vapour, etc.) nor trajectory calculations
support direct transport of boundary layer air to the TTL
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for the probed air masses with elevated ClO mixing ratios.
The fact that observed ClO mixing ratios were generally
higher during SCOUT-O3 – at a site strongly influenced by
marine air – than during TROCCINOX (Fig. 3) could of
course point to transport from the marine boundary layer,
but we deem this unlikely for the reasons described above.
A more plausible explanation may be the higher altitude of
the tropopause and the observed cirrus clouds and therefore
possibly a higher abundance of Cly that can be activated dur-
ing the SCOUT-O3 campaign in Darwin. The tropopause
was also significantly colder during SCOUT-O3 than dur-
ing TROCCINOX (Fig. 2a), resulting in faster heterogeneous
processing on background aerosol and more extensive and
prolonged cirrus formation during SCOUT-O3. This conclu-
sion is supported by the CLaMSCTM simulations.

4 Case studies – investigation of the Cl activation
mechanism

Several incidences of strongly enhanced ClO were observed
during two SCOUT-O3 flights on 19 and 30 November 2005,
which we examine in more detail in the following. Figures 6
and 7 show observations of ClO, O3, NOy and NO, H2O (gas
phase and total), particle number densities, temperature and
solar zenith angle as well as ice water content predicted by
CLaMS simulations along the flight path and along 5-day
backtrajectories preceding the flight. For 19 November, the
HALOX NO-addition-cycle integration was carried out with
a variable time resolution such that time resolution is max-
imised while still obtaining a sufficient signal-to-noise ratio.
For the most prominent event of potential cirrus activation
(cf. below), mean and standard deviation of all points inside
the grey shaded area are also shown. Between 06:00 and
07:00 UTC, when the aircraft carried out a rapid succession
of short ascents and descents, the frequency of variations in
pressure and temperature was higher than the averaging time
scales needed to obtain data at an adequate signal-to-noise
ratio. On 30 November, longer averaging periods were nec-
essary due to low detector sensitivity.

In many cases, the enhanced ClO is clearly associated with
cirrus clouds, i.e. elevated ClO occurs with low temperature
and the presence of ice water. The latter is deduced from
either FISH total water mixing ratios exceeding gas phase
water vapour and/or the saturation over ice (unfortunately,
no FLASH data are available for 30 November 2005), or
from the presence of large particles detected by the FSSP
instrument, or both. From the CLaMS simulations, the pres-
ence of ice seems likely also for the point with∼22 ppt ClO
at the end of the ascent on 19 November. The ClO mix-
ing ratios around 10 ppt observed near the end of this flight
not associated with low temperatures and ice originate from
stratospheric air identified by the higher ozone levels mea-
sured by FOZAN (cf. also Figs. 3 and 4). The distribution
of water vapour around the flight track – estimated using

Fig. 6. Observations made during the SCOUT-O3 flight on 19
November 2005 from Darwin (see text for details). Also shown
in the top panel are CLaMSCTM simulations ofX(H2O) around
the Geophysica flight track with white contours indicating the pre-
dicted occurrence of cirrus clouds. The bottom panel shows CLaMS
X(H2O)condalong 5-day backtrajectories ending on the flight track.

CLaMS CTM and shown in the top panel – suggests highest
ClO levels near the top of cirrus clouds. For 30 November
(Fig. 7), the observations of elevated ClO are not necessar-
ily found near the top of the cirrus layer, at least according
to the CLaMS simulations. Of the three points marked by
the grey shading, simultaneous observations of cirrus parti-
cles (FSSP and FISH) were only made for the first one. For
the second point, an association with cirrus occurrence is un-
certain, while the third observation of elevated ClO at the
beginning of the decent coincides with the aircraft passing
through a cirrus layer. Interestingly, the observations on 30
November were made in darkness (SZA> 100◦), when sig-
nificant amounts of ClO are not normally expected. This will
be discussed in detail below.

Both flights were investigated in detail using the
CLaMS BT chemistry simulation along back trajectories de-
scribed in Sect. 2.3. The purpose of these simulations
is to understand the observed heterogeneous chlorine ac-
tivation in a qualitative sense and to investigate possible
mechanisms. Clearly, the CLaMSBT simulations are not
expected to quantitatively reproduce all observations made
during the flight, because of the uncertainties in the ECMWF
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Fig. 7. As Fig. 6 but for the flight on 30 November 2005.

wind fields and more importantly the chemical initialisation.
Moreover, processes such as mixing of air masses and sedi-
mentation of ice-particles from higher altitudes are not rep-
resented in the model.

Figure 8 shows the simulation results for the flight on
19 November 2005 along one chosen back-trajectory for a
time window where high chlorine activation was observed
by HALOX. Using the observed mixing ratios of ozone,
NOy, and H2O, the simulation did not reproduce the ob-
served ClO mixing ratios. However, the simulation indeed
shows the observed almost complete chlorine activation in
sensitivity studies run with higher Bry and/or O3 mixing ra-
tios (Fig. 8). For the run with 200 ppb O3 and 1 ppt Bry
(green) CLaMSBT predicts ClO to be present in signifi-
cant amounts during night-time. This is also the case for
the 30 November simulation shown in Fig. 9. Here, the ob-
servations were actually made in darkness and confirm the
model results in this respect. To understand this surpris-
ing result, one needs to take a closer look at the night-time
reservoir species and the respective rates of ClO conversion.
Both the nature of the night-time reservoir and the conver-
sion rate depend on the chemical conditions, in particular the
amounts of NOx and BrO present. When NOx is available
(with mixing ratios roughly>15 ppt), ClO reacts with NO2
to form ClONO2 (e.g., between 2 and 4 days prior to the
observations, the amount of ClONO2 produced in the sim-
ulations essentially matches the difference between daytime

Fig. 8. CLaMS BT simulation results for the flight on 19 Novem-
ber 2005 for various parameters along a chosen back-trajectory end-
ing on the flight path at 05:51 UTC, i.e. in the time window where
chlorine activation was observed by HALOX for different initiali-
sations: Red: 1 ppt Bry/50 ppb O3; black: 1 ppt Bry/125 ppb O3;
green: 1 ppt Bry/200 ppb O3; blue: 5 ppt Bry/125 ppb O3. Corre-
sponding observations at the trajectory endpoints are shown in grey.
The observedx(O3) was∼60 ppb.

and nighttime NOx and coincides with the drop in ClO, both
shown by the blue and green lines in Fig. 9). If particles are
present, this can heterogeneously convert to Cl2 that quickly
returns to ClO after sunrise. If NOx levels drop to a few
ppt or less, this pathway becomes too inefficient to remove
ClO. OClO and BrCl are formed at reasonable rates if suf-
ficient BrO is present. This is the case in the simulations
with prescribed Bry of 5 ppt (blue line in Figs. 8 and 9, cf.
below), while the 1 ppt assumed in the other model runs is
not sufficient. If neither NO2 nor BrO are present, the only
significant loss of ClO at night occurs via the ClO self re-
action ClO + ClO + M→ ClOOCl. However, even though
the rate constantkf of this dimer formation reaction is fast
at low temperatures, the reaction proceeds much slower in
the tropical UTLS than for example in the activated polar
vortices, which is due to the quadratic dependence of the
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Fig. 9. As Fig. 8 but for the flight on 30 November 2005 with the
trajectory ending on the flight path at 14:06 UTC. The dotted lines
show simulations with different rate constants for the ClO/ClOOCl
reaction (see text for details). The observedx(O3) was∼60 ppb.

reaction rate on the ClO concentration. For the conditions
found on 19 and 30 November, the lifetime of ClO with re-
spect to dimer formation is too long for complete conversion
overnight. This seems to be confirmed by the observed ClO
mixing ratios on 30 November that are even higher than the
simulated ones. However, this difference is not surprising
given the uncertainties in the measurements, in the amount
of Cly with which the model is initialized, and in the rate
constants governing the ClO/ClOOCl partitioning. The latter
is shown by the dotted lines in Fig. 9, where a combination of
kf according to Nickolaisen et al. (1994) and a ClO/ClOOCl
equilibrium constant according to Plenge et al. (2005) is used
that has been shown by von Hobe et al. (2007) to more real-
istically reproduce ClO and ClOOCl mixing ratios made in
the Arctic.

The mechanism of chlorine activation implemented in
CLaMS (both CLaMSST and CLaMSBT) is illustrated in
Fig. 10. In the presence of ice surfaces and sunlight, chlorine
activation is possible by the following reaction chains

ClO+NO2 → ClONO2 (R5)
HCl+ClONO2 → Cl2+HNO3 (R1, het.)
Cl2+hν → 2Cl (R6)

2× Cl+O3 → ClO+O2 (R7)

Net: HCl+NO2+2O3 → ClO+HNO3+2O2 (chain 1),

ClO+HO2 → HOCl+O2 (R8)
HCl+HOCl → Cl2+H2O (R2, het.)
Cl2+hν → 2Cl (R6)

2× Cl+O3 → ClO+O2 (R7)

Net: HCl+HO2+2O3 → ClO+H2O+3O2 (chain 2)

and

ClO+NO2 → ClONO2 (R5)
H2O+ClONO2 → HOCl+HNO3 (R3, het.)
HCl+HOCl → Cl2+H2O (R2, het.)
Cl2+hν → 2Cl (R6)

2× Cl+O3 → ClO+O2 (R7)

Net: HCl+NO2+2O3 → ClO+HNO3+2O2 (chain 3)

Detailed investigations on the reaction rates of all mod-
elled chemical reactions were performed in order to assess
the relative importance of these individual reaction chains
in the simulations under various conditions. Although all
these chains start with a deactivation reaction, two chlorine
reservoir molecules are activated by the subsequent heteroge-
neous reaction, resulting in a net chlorine activation (Müller
et al., 1994). At the same time as they activate chlorine,
chains 1 and 3 remove NOx from the gas phase into the par-
ticle phase as HNO3.

These reactions are counteracted by the chlorine deactiva-
tion reaction

Cl+CH4 → HCl+CH3. (R9)

The net chlorine activation through chains 1–3 can only take
place if the overall activation rate is faster than the chlorine
deactivation via Reaction (R9). The simulations show that
once low NOx levels are reached (by removal through chains
1 and 3), chlorine partitioning suddenly switches from low
to almost complete activation. The reason for this behaviour
will be explained below. The sensitivity studies show that the
occurrence of this threshold is especially sensitive to Bry and
O3 levels.

During daytime, when ClO is present, Reaction (R5) is
slow due to most NOx being present in the form of NO. To
understand the dependencies of chlorine activation onx(Bry)
andx(O3), the ratiosx(Cl)/x(ClO) andx(NO2)/x(NO) are
critical. Under tropical daytime conditions in the TTL,
x(Cl)/x(ClO) is determined by Reactions (R7) and

Atmos. Chem. Phys., 11, 241–256, 2011 www.atmos-chem-phys.net/11/241/2011/



M. von Hobe et al.: Evidence for heterogeneous chlorine activation in the tropical UTLS 251

Fig. 10.Schematic of the chemical reaction system governing chlo-
rine partitioning in ClaMS. Green arrows denote heterogeneous re-
actions.

ClO+NO→ Cl+NO2. (R10)

and can be approximated by

x(Cl)

x(ClO)
=

c(Cl)

c(ClO)
=

k10c(NO)

k7c(O3)
(1)

assuming photochemical steady state.
Similarly, thex(NO2)/x(NO) ratio is determined by (R10),

BrO+NO→ Br+NO2, (R11)

O3+NO→ O2+NO2, (R12)

and

NO2+hν → NO+O (R13)

giving

x(NO2)

x(NO)
=

c(NO2)

c(NO)
=

k10c(ClO)+k11c(BrO)+k12c(O3)

J13
(2)

The simulations show that chain 1 is most important in the
case of low chlorine activation. The chlorine activation rate
Ract 1 through chain 1 is given by

RAct 1 = k5c(ClO)c(NO2) (3)

which, using Eq. (2), becomes

RAct 1 = k5c(ClO)c(NO)
k10c(ClO)+k11c(BrO)+k12c(O3)

J13
. (4)

The deactivation rateRDeact 9 through Reaction (R1) is given
by

RDeact 9 = k9c(Cl)c(CH4) (5)

which, using Eq. (1), becomes

RDeact 9 =
k9k10c(NO)c(ClO)c(CH4)

k7c(O3)
(6)

A sufficient condition for chlorine activation in the presence
of ice surfaces is given if the chlorine activation rate exceeds
the deactivation rate:

RAct 1

RDeact 9
=

k5k7c(O3)

k9k10J13

k10c(ClO)+k11c(BrO)+k12c(O3)

c(CH4)
>1 (7)

The simulations show that NOx is converted to HNO3 by
chains 1 and 3 (with chain 1 dominating). If very low NOx
mixing ratios are reached, chains 1 and 3 do not work any-
more and further chlorine activation can only occur via chain
2.

The condition formulated above (Eq. 7) is independent of
NOx. Simulations demonstrate that in the case that chlorine
is already activated, the chlorine activation chains keep work-
ing, even if NOx is added. However, in this case, NOx is
converted to HNO3 at a rate of about 150 ppt/day through
chain 1.

The dependence ofRAct 1/RDeact 9 (Eq. 7) on ClO itself is
the main reason for the threshold-like behaviour of chlorine
activation. If some chlorine is activated and is in the form
of ClO, the effective activation rate increases. This causes a
hysteresis-like behaviour in chlorine activation: under other-
wise identical conditions, air masses with activated chlorine
may stay activated whereas air masses without chlorine acti-
vation may not be activated at all. In the case of full activa-
tion an almost complete removal of NOx is simulated.

Although chlorine activation is not simulated using the ob-
served mixing ratios of O3, BrO and NOx, it has been shown
that the point at which the system switches to chlorine acti-
vation sensitively depends on a number of factors. Possible
uncertainties are present in the simulation e.g. the reaction
rates or possible omitted chemical reactions, and tempera-
tures along the back-trajectory. A Gaussian error propaga-
tion of Eq. (7) with respect to uncertainties of the individual
rate constants given in Sander et al. (2006) at 200 K yields
an uncertainty of about a factor of 3 forRAct 1/RDeact 9 (this
does not yet include the uncertainty of the photolysis rate
or the uncertainty of any of the chemical species concen-
trations). Further, there are indications that the formation
of HOCl from ClO + HO2 may be faster than recommended
(Kovalenko et al., 2007; Stimpfle et al., 1979; von Clarmann
et al., 2008). If these indications were true the Cl activation
would be even faster.

To illustrate the complex sensitivity of chlorine activation
to various mixing ratios and rate constants, we plotted in
Fig. 11 the ClO mixing ratio on the final day of the trajectory
that ends on the observed point with high chlorine activation
for different initial ozone mixing ratios. The red symbols
show results for the 1 ppt Bry and the standard set of chemi-
cal reactions. A full Cl-activation is found for ozone mixing
ratios above a threshold of about 185 ppb. The precise loca-
tion of this threshold depends on model parameters.

If for the reaction (ClO + HO2) a faster rate coefficient is
assumed as suggested by (Kovalenko et al., 2007; Stimpfle et
al., 1979; von Clarmann et al., 2008), the threshold for full
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Fig. 11. Sensitivity of final day ClO in the CLaMSBT simulation
results for the flight on 19 November 2005 (Fig. 8) to ozone mixing
ratio for various input parameterisations as described in detail in the
text. The changes made to the reference parameterisation (red) are
indicated in the graph and are cumulative from right to left.

chlorine activation is found at slightly lower ozone mixing
ratios (blue symbols in Fig. 11). In addition, there are as-
sumptions in this simulation that also introduce uncertainty
in the heterogeneous reaction rates. A sensitivity study was
performed using an increase of all heterogeneous reaction
rates by a factor of 5 (green symbols). This would corre-
spond to using the lower climatological limit of ice parti-
cle radius of about 2 µm (Gensch et al., 2008; Krämer et
al., 2009; M̈ohler et al., 2005). The uncertainty of gas-
phase reaction rate coefficients at temperatures below 190 K
is also significant. The orange symbols show simulations in
which the reaction rate coefficient of the reaction O3 + NO is
changed to the upper error limit of the recommended value.
The brown symbols correspond to the upper error limit of the
recommended value for the reaction (ClO + NO2). The posi-
tion of the threshold also depends on the amount of available
Bry. The remaining symbols (light blue, pink, light grey,
dark grey) correspond to assumptions of larger Bry mixing
ratios of 2, 3, 4, and 5 ppt, respectively. A combination of all
changes with the assumption of 5 ppt Bry would result in full
chlorine activation at 50 ppb O3.

The amount of Bry from VSLS entering the stratosphere
is subject to debate. A range of 3–8 ppt is given in WMO
(2006). A comprehensive inventory of bromine containing
VSLS from balloon-borne measurements (Laube et al., 2008)
supports the lower end of this given range, while Salawitch
et al. (2010) argue for a contribution of up to 10 ppt. In
any case, VSLS bromine would not be expected to be com-
pletely converted to inorganic forms in the more tropospheric
air masses encountered here, and neither the HALOX BrO
measurements (always<4 ppt detection limit) nor earlier ob-
servations of inorganic bromine in the tropical upper tropo-
sphere and UTLS (Dorf et al., 2008) warrant mixing ratios

above 5 ppt. Finally, the blue lines in Figs. 8 and 9 show that
5 ppt Bry are sufficient to remove most of the ClO present
rapidly after nightfall, so 5 ppt Bry would be inconsistent
with the observation of ClO being present in darkness.

For the combinations of O3 and Bry mixing ratios resulting
in heterogeneous chlorine activation, the CLaMSBT simu-
lation yields much lower NOx values than observed. This
is puzzling, because any ClO formed will rapidly react with
NO2 to form ClONO2. But as long as the ice particles pro-
viding the heterogeneous surfaces are there, the deactivation
caused by this reaction will not persist. To the contrary, chlo-
rine activation is preserved or even amplified by ClONO2 re-
acting heterogeneously with HCl or H2O (Fig. 10) until at
some point all the NOx is removed from the gas phase into
HNO3 on the particles by this process (blue and green lines in
Figs. 8 and 9). This happens on a time-scale of about 1 day,
so the simultaneous observation of high ClO and NOx mix-
ing ratios can be explained if the NOx measured by SIOUX
was produced or transported within a few hours preceding the
flight. A plausible explanation may be in-situ NOx produc-
tion by lightning in Hector and other single cell continental
thunderstorms in the measurement area. A sensitivity sim-
ulation was carried out, in which 300 ppt of the prevailing
HNO3 was artificially reformed into NOx. It was observed
that the NOx addition did leave the model in the chlorine-
activated state, and the additional NOx was reformed back
to HNO3 through reaction chains 1 and 3 on a time scale of
about one day. Thus, jointly elevated ClO and NOx is plau-
sible if the in-mixing of NOx-rich air is indeed very recent.
Huntrieser et al. (2009) find clear evidence for lightning in-
duced NOx by thunderstorm systems on 19 November be-
tween 02:00 and 07:00 UTC at lower flight levels observed
by the DLR Falcon aircraft. The elevated NOx observed by
SIOUX on the Geophysica just before 06:00 UTC could be a
product of fresh outflow from these systems.

In-mixing of fresh convective outflow would also affect
ozone mixing ratios, which on both days were on the order
of 50 ppb for the parts of the flights where elevated ClO was
observed, quite in contrast to the 200 ppb O3 needed to obtain
heterogeneous activation in the CLaMSBT simulations.

5 Conclusions

Observations of ClO in the tropics between 11 and 20 km al-
titude were made during two aircraft campaigns in 2005. In
general, higher ClO mixing ratios were found in air masses
of stratospheric origin, but incidences of enhanced ClO of
up to 40 ppt in tropospherically dominated air masses were
observed during and after cirrus events and/or following pe-
riods of relatively low temperatures. Thus there is strong
evidence for heterogeneous chlorine activation proceeding
in the tropical UTLS on both ice particles and background
aerosol at low temperature, although our results do not pro-
vide sufficient evidence to assess the relative importance of
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the two. As demonstrated by CLaMSST and CLaMSCTM
simulations, the amount of active chlorine that can be pro-
duced by heterogeneous activation, and consequently ClO
mixing ratios in the tropical UTLS, depend most strongly on
the availability of Cly and on the persistence of temperatures
below≈195 K and/or the life-time of the cirrus clouds. With
the CLaMSBT simulations for the case studies we could
demonstrate that an almost complete chlorine activation near
the tropopause is possible but depends on many factors. Be-
cause of competing activation and deactivation chains, dif-
ferent Cl activation may be found in similar air masses. With
the known chemical mechanisms and rate constants, the con-
ditions under which the CLaMS model predicts complete ac-
tivation is most sensitive to O3 and Bry concentrations, with
uncertainties in individual reaction rate constants leading to
a significant uncertainty in the threshold condition for the
domination of the chlorine activation chain.

Clearly, the model parameters used in the CLaMS model
runs where almost complete activation was simulated do not
correspond closely to observations, in particular with respect
to observed O3 and NOx levels, suggesting that the under-
standing and, consequently, model implementation of the rel-
evant chemical processes in the TTL is yet incomplete. Part
of the discrepancies may be explained by uncertainties in rate
constants and Bry levels, and/or mixing processes within less
than one day prior to the observations.
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Reddmann, T., Ḧopfner, M., Kellmann, S., Kouker, W., Linden,
A., and Funke, B.: HOCl chemistry in the Antarctic Stratospheric
Vortex 2002, as observed with the Michelson Interferometer for
Passive Atmospheric Sounding (MIPAS), Atmos. Chem. Phys.,
9, 1817–1829, doi:10.5194/acp-9-1817-2009, 2009.

von Hobe, M., Grooß, J.-U., M̈uller, R., Hrechanyy, S., Winkler, U.,
and Stroh, F.: A re-evaluation of the ClO/Cl2O2 equilibrium con-
stant based on stratospheric in-situ observations, Atmos. Chem.
Phys., 5, 693–702, doi:10.5194/acp-5-693-2005, 2005.

von Hobe, M., Salawitch, R. J., Canty, T., Keller-Rudek, H., Moort-
gat, G. K., Grooß, J.-U., M̈uller, R., and Stroh, F.: Understand-
ing the kinetics of the ClO dimer cycle, Atmos. Chem. Phys., 7,
3055–3069, doi:10.5194/acp-7-3055-2007, 2007.

Wang, P. H., Minnis, P., McCormick, M. P., Kent, G. S., and Skeens,
K. M.: A 6-year climatology of cloud occurrence frequency
from Stratospheric Aerosol and Gas Experiment II observations
(1985–1990), J. Geophys. Res., 101, 29407–29429, 1996.

Weigel, R., Hermann, M., Curtius, J., Voigt, C., Walter, S., Böttger,
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