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Abstract. The ACE-FTS (Atmospheric Chemistry Experi-

ment – Fourier Transform Spectrometer) instrument on board

the Canadian satellite SCISAT has been observing the Earth’s

limb in solar occultation since its launch in 2003. Since

February 2004, high resolution (0.02 cm−1) observations in

the spectral region of 750–4400 cm−1 have been used to de-

rive volume mixing ratio profiles of over 30 atmospheric

trace species and over 20 atmospheric isotopologues. Al-

though the full ACE-FTS level 2 data set is available to users

in the general atmospheric community, until now no quality

flags have been assigned to the data. This study describes the

two-stage procedure for detecting physically unrealistic out-

liers within the data set for each retrieved species, which is a

fixed procedure across all species. Since the distributions of

ACE-FTS data across regions (altitude/latitude/season/local

time) tend to be asymmetric and multimodal, the screening

process does not make use of the median absolute deviation.

It makes use of volume mixing ratio probability density func-

tions, assuming that the data, when sufficiently binned, are

at most tri-modal and that these modes can be represented

by the superposition of three normal, or log-normal, distri-

butions. Quality flags have been assigned to the data based

on retrieval statistical fitting error, the physically unrealis-

tic outliers described in this study, and known instrumen-

tal/processing errors. The quality flags defined and discussed

in this study are now available for all level 2 versions 2.5 and

3.5 data and will be made available as a standard product for

future versions.

1 Introduction

One of the most common techniques for screening out

anomalous data from a data set is to calculate the set’s mean

(µ) and standard deviation (σ). Data that are outside the lim-

its of µ± k σ , where k is some constant, are deemed to be

outliers. Another common, and similar, method is to use the

median and MAD (median absolute deviation) (Leys et al.,

2013; Toohey et al., 2010, and references therein), in place

of the mean and standard deviation respectively, where,

MAD=mediani
(∣∣xi −medianj

(
xj
)∣∣) . (1)

This method is much less sensitive to extreme outliers, as

the presence of outliers typically has an insignificant effect

on the median value. It can be used as an efficient tool in de-

tecting outliers for data that are normally distributed. How-

ever, using this value as a method of detecting outliers can be

ineffective if the data being analysed are multimodal and/or

are asymmetrically distributed about the median. In the case

of data that are multimodal or asymmetrically distributed

and contain multiple extreme outliers, it is likely that neither

the σ nor the MAD will be an appropriate estimate of the

variation, or scale, of the measurements. In such cases, they

should be avoided in the detection of outliers (Rousseeuw

and Croux, 1993).

In satellite remote sensing, isolating geographi-

cal/seasonal/local time regions where global satellite-based

data are symmetrically distributed and uni-modal can be

difficult and/or tedious. Measurements grouped into a given

altitude, latitude, month, and local time bin can be driven

away from typical behaviour by any number of factors (e.g.

the polar vortex, a solar proton event, a sudden stratospheric
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warming, biomass burning, presence of polar stratospheric

clouds, etc.), thereby altering the “typical” distribution of

observed measurements, and hence the probability density

function (PDF) of the trace species concentration.

The often used method for detecting outliers of employing

the MAD does not explicitly make use of a PDF, but, in or-

der for it to be useful, it does make an implicit assumption

that the PDF is approximately symmetric about the median

value. Other often used methods, such as Peirce’s criterion

(Peirce, 1852; Ross, 2003) and Chauvenet’s criterion (Chau-

venet, 1871), explicitly make use of a PDF, however they

assume that the PDF is a Gaussian distribution. It should

also be noted that in atmospheric science, the use of PDFs

is not uncommon in tracer and validation studies. Lary and

Lait (2006), in their introduction, give excellent examples of

different types of tracer studies; and studies such as Miglior-

ini et al. (2004), Lary and Lait (2006), and Wu et al. (2008)

have demonstrated that PDFs can be used as a validation tool,

where PDFs as measured by different atmospheric sounders

are inter-compared rather than inter-comparing co-located

measurements.

The ACE-FTS (Atmospheric Chemistry Experiment –

Fourier Transform Spectrometer (Bernath et al., 2005))

instrument, on board the Canadian satellite SCISAT, is

a solar occultation, high spectral-resolution (0.02 cm−1)

Fourier transform spectrometer operating between 750 and

4400 cm−1. ACE-FTS observations are used to derive vol-

ume mixing ratio (VMR) profiles of over 30 atmospheric

trace gases, as well as profiles of over 20 subsidiary isotopo-

logues of atmospheric species (Boone et al., 2005). SCISAT

was launched in 2003 and ACE-FTS has been providing con-

sistent measurements since February 2004. Atmospheric pro-

files range in altitude from ∼ 5–110 km, depending on the

species, with a vertical resolution of ∼ 3–4 km and sampling

of 1–6 km.

This study outlines the repercussions of screening data

based on the σ or the MAD given non-normally distributed

data and discusses a two-step process for detecting outliers

that is currently carried out on the ACE-FTS level 2 data set.

All data presented in this study are ACE-FTS level 2 version

3.5 (v3.5) (Boone et al., 2013) spanning February 2004 to

February 2013; however the same processes have been used

for detecting outliers in version 2.5 (v2.5) data. The main

differences in v3.5 from v2.5 are:

– amended sets of microwindows for all molecules, and

an increase in the number of allowed interferers in the

retrievals;

– improvement in temperature/pressure retrievals, lead-

ing to a reduction in unphysical oscillations in retrieved

temperature profiles;

– inclusion of COCl2, COClF, H2CO, CH3OH, and

HCFC-141b, and the removal of HOCl and ClO VMR

retrievals.

Physically unrealistic outliers can occur in the ACE-FTS

level 2 for a number of different reasons. Many of these are

often caught prior to being added to the level 2 database, such

as outliers due to exceedingly noisy spectra, ice contamina-

tion on the ACE-FTS detector affecting an occultation, and

a variety of processing errors. However, these are not always

caught by pre-screening, and other factors not accounted for

in the pre-screening can contribute to the presence of outliers,

for example, poor statistical fitting or convergence onto an

unrealistic solution in the retrieval, inaccurate pressure and

temperature a priori information.

The outlier detection and subsequent data flagging proce-

dures discussed in this study have only been performed on

the ACE-FTS level 2 data products that have been interpo-

lated onto a 1 km altitude grid (between 0.5 and 149.5 km)

(Boone et al., 2005). The philosophical approach for iden-

tifying data as potential outliers was one of caution, in that

it is better to keep some “bad” data (likely to be physically

unrealistic) than to reject “good,” or “true,” data (likely to be

physically realistic). It was also desired that the approach be

consistent for all subsets of data being analysed, i.e. toler-

ance levels, regional limits, etc. should be the same for all

species, for all seasons, at all altitudes. For the remainder of

this study, these physically unrealistic data will be referred

to as “unnatural” outliers, and the data that are likely to be

physically realistic, yet still seemingly outlying, as “natural”

outliers. All data that are not unnatural outliers will be re-

ferred to as inliers.

2 Detection method and results

All distributions of data discussed in this section represent

the February 2004–February 2013 data, and all VMRs are

given in parts per volume (ppv).

Global satellite-based measurements of trace gases in the

atmosphere are typically not symmetrically distributed and

are often multimodal. Different regions are governed by dif-

ferent, varying processes, and therefore analysis of the data

is typically carried out by breaking down the data into dif-

ferent altitude, latitudinal, etc. bins. Figure 1 shows all the

ACE-FTS H2O data at 17.5 and 35.5 km and the correspond-

ing measurement distributions. For both subsets of H2O

data, inlier limits were determined for µ ±3σ and median

±3MAD× 1.428 (1.428 is the scale factor for the MAD to

equal the σ assuming a normal distribution (Rousseeuw and

Croux, 1993)). These limits are plotted in Fig. 1a and Fig. 1c

and highlight two key points: first, using the standard devi-

ation when there are extreme outliers can allow for the ac-

ceptance of data that are most likely physically unrealistic.

Second, using the MAD on multimodal or asymmetrically

distributed data can lead to the rejection of physically realis-

tic data. For instance, as shown in Fig. 1a, the lower cut-off

using the MAD of 2.76 ppm clearly excludes the low H2O

concentrations that are observed in Antarctic (austral) spring.
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Figure 1. ACE-FTS level 2 v3.5 H2O data (left) and corresponding distributions (right). The top panel (a and b) shows all data at 17.5 km,

and the bottom panel (c and d) shows all data at 35.5 km.

As can be seen in Fig. 1b and Fig. 1d, the H2O data at both

altitude levels are not normally distributed.

The data can be separated further into bins based on lat-

itudinal regions and local times. For example, Fig. 2 shows

H2O and O3 sunset data at 30.5 and 35.5 km, separated into

different latitude regions (0–30, 30–60, and 60–90◦ S), with

dashed lines representing best fits to Gaussian distributions.

These regions are representative of bins often used to parti-

tion atmospheric data. Figure 2 exemplifies that using a given

bin definition that leads to data with a symmetric and uni-

modal distribution at one altitude level does not necessar-

ily lead to a symmetric and uni-modal distribution of data

at all altitude levels, nor across all species. For instance, in

Fig. 2a the 35.5 km O3 distributions in all three latitude re-

gions are fairly symmetric. However, the 35.5 km H2O distri-

bution (Fig. 2c) in the mid-latitudes is highly skewed, and in

the high latitudes the distribution is tri-modal. In Fig. 2b and

d we see bimodal, asymmetric distributions for both O3 and

H2O in the 30–60 and 60–90◦ S regions at 30.5 km. For high-

latitude data in many species’ data sets, distributions can be

bimodal due to observing inside and outside of the vortex,

and therefore it is not possible to find sub-regions (based on

season, latitude, or local time) that will always exhibit sym-

metric distributions. Therefore, the ACE-FTS data screening

process takes an approach that does not require the distribu-

tion of any subset of data to be symmetric or containing just

one mode.

Initially, all data were pre-screened. Any occultation that

contained errors due to previously known issues (e.g. unre-

alistic N2O concentrations due to a convergence failure for

occultations with low water levels, ice buildup on the de-

tectors during early mission occultations, bad spectra used

in the calibration, level 0–1 processing errors, etc.) were

removed prior to analysis. A full list of known issues is

given on the ACE validation website, https://databace.scisat.

ca/validation. Then, for each species, at each altitude level,

any data point with an absolute value greater than 10 000

times the median of all absolute values was rejected. Abso-

lute values were used, as ACE-FTS VMR retrievals were al-

lowed to be negative, and therefore, in some cases the median

of the actual values could be very close to zero.

The screening processes started by analysing the data’s

PDFs. The normalized PDF of data subset x, PDF(x), multi-

plied by the number of data points, N , gave the expectation

density function (EDF) at a given value of x,

EDF(x)=N ×PDF(x) . (2)

The total integral of the EDF is equal to N , and the in-

tegral between any two values of x gives the number of ex-

pected data points within that range. For determining unnatu-

ral outliers, we want to find the values of x where the integral

www.atmos-meas-tech.net/8/741/2015/ Atmos. Meas. Tech., 8, 741–750, 2015
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Figure 2. 2004–2013 ACE-FTS VMR distributions for sunset occultations (symbols) in the Southern hemisphere and corresponding best fits

to normal distribution (dashed lines): (a) O3 at 35.5 km; (b) O3 at 30.5 km; (c) H2O at 35.5 km; (d) H2O at 30.5 km.
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Figure 3. Sunrise ACE-FTS O3VMR distribution at 30.5 km (blue circles) and fitted EDF (dashed black lines) for (a) 60–90◦ N, and (b)

60–90◦ S. The dotted green lines are the fitted Gaussian distributions in calculating each of the EDFs, and the fitted distributions have been

normalized to the measured VMR distributions.

between infinity (negative and positive) and xlim (lower and

upper values) is less than 1. Anywhere that the integral (from

infinity) of the EDF is less than 1 is most likely a statistical

outlier, as no data points are expected to be measured beyond

the values of xlim, given the PDF. Therefore, the criterion for

excluding data can be any value of x where
∫ x
−∞

E
(
x′
)

dx′

or
∫
∞

x
E
(
x′
)

dx′ is less than or equal to 1. This is similar to

Peirce’s criterion (Peirce, 1852; Ross, 2003) and Chauvenet’s

criterion (Chauvenet, 1871), which both assume a normally

distributed PDF. The tolerance level can be varied to suit the

desired acceptance level of possible outliers. For ACE-FTS

data, a tolerance level, determined empirically, of 0.025 is

used, which corresponds to a 97.5 % confidence of an ex-

cluded data point being an outlier, i.e. any value x where∫ x
−∞

E
(
x′
)

dx′ or
∫
∞

x
E
(
x′
)

dx′ is less than 0.025 is rejected.

This method, however, required determining an analyti-

cal solution for the data’s EDF. For each of the 50+ ACE-

FTS retrieved species, at each altitude level, the data was

separated into sunset and sunrise occultations, in order to

separate into similar local conditions, as well as into four

Atmos. Meas. Tech., 8, 741–750, 2015 www.atmos-meas-tech.net/8/741/2015/
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Figure 4. Sunrise ACE-FTS VMR distribution (blue circles) and

fitted EDF (black dashed lines) for: (a) NO2 at 30.5 km in the lat-

itude region 60–90◦ S; (b) CH4 at 20.5 km, 0-60◦ N; and (c) N2O

at 20.5 km, 60–90◦ N. The dotted green lines are the fitted Gaussian

distributions in calculating each of the EDFs, and the fitted distribu-

tions have been normalized to the measured VMR distributions.

different latitude regions: 60–90◦ S; 0–60◦ S; 0–60◦ N; and

60–90◦ N. Due to the SCISAT orbital geometry, the major-

ity of ACE-FTS measurements were at high latitudes, and

therefore each latitudinal bin had roughly the same number

of profiles. The distribution of each subset was then fit to a

Gaussian mixed distribution, using three Gaussian distribu-

tions. This assumed that the data was, at most, tri-modally

distributed. Since it is not uncommon for distributions of at-

mospheric measurements to be log-normal, the fit was done

in log-space (if there is negative data, a constant greater than
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Figure 5. Sunrise ACE-FTS data for the same data subsets as Fig. 4.

The red circles are data that have been determined to be unnatural

outliers as per the EDFs, and the blue dots are the inlying data.

the minimum value was added to the data set prior to the

fit, which maintained the shape of the distribution). The fit

was performed using the Matlab statistical toolbox, which

uses an estimation maximization algorithm (McLachlan and

Peel, 2000). In an effort to avoid fitting to extreme outliers, an

ad-hoc “Olympic”-style method was employed, whereby the

data set’s five lowest and five highest values were excluded

in the fit. Figure 3 shows the O3 distribution at 30.5 km in the

60–90◦ S and 60–90◦ N regions, along with the fitted EDFs

and the three Gaussian distributions derived in the fit for both

cases.
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Table 1. Percent rejection of ACE-FTS level 2 v3.5 profiles that

contain one or more detected unnatural outlier (either by running

MeAD or EDF).

Species % reject Species % reject Species % reject

C2H2 1.54 HCFC141b 1.82 C17O 1.67

C2H6 1.89 HCFC142b 1.66 C18O 2.21

CCl2F2 2.10 HCl 2.18 O13CO 3.98

CCl3F 1.53 HCN 2.26 O13C18O 1.09

CCl4 1.67 HCOOH 1.95 OC17O 1.24

CF4 1.83 HF 1.46 OC18O 4.59

CFC113 1.33 HNO3 2.25 H17OH 2.74

CH3Cl 2.11 HNO4 2.39 H18OH 2.91

CH3OH 2.40 N2 2.08 HDO 2.70

CH4 2.81 N2O 3.96 15NNO 2.28

CHF2Cl 2.29 N2O5 2.15 N15NO 2.34

ClONO2 1.78 NO 4.50 NN17O 1.77

CO 4.03 NO2 2.22 NN18O 2.94

CO2 5.39 O2 1.81 O17OO 2.98

COCl2 2.08 O3 2.24 O18OO 1.95

COClF 1.29 OCS 1.45 OO18O 1.73

COF2 1.31 SF6 2.25 O13CS 2.20

H2CO 3.03 13CH4 2.98 OC34S 2.04

H2O 3.81 CH3D 2.17

H2O2 2.74 13CO 2.94

Figure 4 shows three examples of ACE-FTS sunset data

distributions – NO2 at 60–90◦ S and 30.5 km, CH4 at 0–

60◦ N and 20.5 km, and N2O at 60–90◦ N and 20.5 km –

and the corresponding fitted EDFs. These were chosen in or-

der to illustrate typical results for commonly used ACE-FTS

data. The average root-mean-square error (RMSE) between

the EDFs and actual distributions, over all species and data

subsets, is 6 % and has a standard deviation of 2 %. Figure 5

shows the inliers and unnatural outliers as determined by the

EDFs for the subsets shown in Fig. 4. As can be seen, not all

subsets contain many extreme outliers, e.g. NO2 at 30.5 km

(Fig. 5a), which only has one detected outlier. When there

are obvious outliers, this method did exclude the most ex-

treme outliers, although perhaps not all unnatural outliers.

For instance, several (potentially) anomalously low values,

near 0.75 ppm, in the CH4 data (Fig. 5b) remain as inliers.

This is in part due to the relatively lax tolerance level of

0.025, which is more likely to leave in outliers than if a larger

value (but still less than 1) were chosen.

It should be noted that screening using the EDF is a hard-

limiting filter. Therefore, using it in the manner described

above does not necessarily reject data that are non-physically

anomalous for a given season. To screen the data for this type

of moderate outlier, the 15 day median and a 15 day varia-

tion scale are calculated for each subset, excluding outliers

as determined from the EDFs. Even on a 15 day timescale,

ACE-FTS subset data can have distributions that are bimodal.

In many cases, the primary mode is sampled much more

frequently than the secondary mode, and therefore, without

careful consideration, data within the secondary mode can be

erroneously screened as unnatural outliers. To avoid this, we
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Figure 6. Sunrise ACE-FTS data for the same data subsets as Fig. 4.

The red circles are data that have been determined to be unnatural

outliers as per the 15 day running median and MeAD, and the blue

dots are data that have been determined to be inliers.

need a variation scale that is sensitive to outliers (unlike the

MAD), but not overly sensitive to outliers (like the σ). For

this, we define a variation scale that is similar to the MAD,

only more sensitive to outliers – the MeAD:

MeAD=meani
(∣∣xi −medianj

(
xj
)∣∣) . (3)

Any data point with a value outside the bounds of

median15±10×MeAD15 are considered to be unnatural out-

liers. The value of 10 was empirically found to maximize

the number of discovered unnatural outliers without rejecting

obvious natural outliers. Figure 6 shows the inliers and out-
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Figure 7. All Antarctic ACE-FTS data for H2O at 17.5 km. The red circles are data that have been determined to be unnatural outliers

following two different methods (sunrise and sunset data were analysed separately), and the blue dots are data that have been determined to

be inliers. (a) Unnatural outliers determined using the 15 day running MeAD. (b) Unnatural outliers determined using the 15 day running

MAD. Unnatural outliers as determined by the EDFs are not shown and were not used in the analysis.

liers as determined by the 15 day running values for the sub-

sets shown in Fig. 4. Clearly this step catches moderate out-

liers that were not detected using the EDFs, although still not

all anomalous data have been screened out. The potentially

anomalous values near 0.75 ppm in the CH4 data (Fig. 6b)

still remain as inliers. Stricter tolerance criteria in either the

EDF or running MeAD screening process would allow for

these data to be screened out; however, they were found to

lead to screening out natural outliers in other subsets of data,

which would be discordant with our philosophical approach.

Going back to the original case of H2O at 17.5 km (Fig. 1a),

an example of the difference between using the MeAD as

opposed to the MAD in the second step is shown in Fig. 7.

However, now the focus is only on the Antarctic data. The

unnatural outliers and remaining inlying data for Antarctic

H2O at 17.5 km are shown for the two different approaches.

Figure 7a shows the results when using limiting values of

median15±10 ×MeAD15, where the significant majority of

the data points screened as unnatural outliers are likely to

be physically unrealistic for their local conditions. Using the

limiting values of median15± 10 × MAD15, Fig. 7b, leads

to many more outliers being detected as unnatural outliers.

Upon inspection, many of these erroneous “unnatural” out-

liers are most likely being erroneously rejected, especially in

late 2009 where ACE-FTS is most likely routinely observing

dehydrated air masses. In both cases, outliers were detected

in the sunrise and sunset data sets separately.

In order to explore the response to periodic extreme events

and to trends, Fig. 8 shows the final inliers and unnatural

outliers in all ACE-FTS HCN data at 9.5 km, which exhibits

periodic increases that could correspond to biomass burning

events (e.g. Crutzen and Andreae, 1990; Pommrich et al.,

2010); as well as all SF6 data at 19.5 km, which exhibits a

clear positive trend throughout the time series (e.g. Rinsland

et al., 2005; Brown et al., 2011). Even in these instances of

extreme events and a significant trend in the data, the out-

lier detection method outlined here is able to keep the natural

outliers as inliers. The top panels (a and d) in Fig. 8 show all

data points and demonstrates the extreme unnatural outliers

(red dots) that can occur within the ACE-FTS data set. The

middle panels (b and e) show the same data as the top pan-

els, however without the more extreme unnatural outliers in

order to better view the data; and the bottom panels (c and f)

show the data with all unnatural outliers removed.

In the overwhelming majority of instances where the ACE-

FTS VMR data exhibit a sudden and/or extreme change

in the distribution, the unnatural outlier detection method

described above does not screen out these events. Sudden

stratospheric warmings cause there to be strong descent

in the northern high-latitude upper atmosphere. This leads

to anomalously large concentrations of NO in the upper

stratosphere-lower mesosphere, near 50 km (e.g. Manney et

al., 2008; Randall et al., 2009). Figure 9a shows the time

series of the final inliers in all ACE-FTS NO at 55.5 km.

It can be seen that the detection method is able to keep

the data during these extreme events as inliers. Anderson et

al. (2012), using in situ aircraft measurements, demonstrated

that in the summer there can be H2O intrusions from the up-

per troposphere into the lower stratosphere at Northern mid-

latitudes. As can be seen in Fig. 9b, the final inlying ACE-

FTS data in the summer Northern mid-latitudes, in the lower

stratosphere, do exhibit large increases in H2O concentra-

tions. Manney et al. (2011) showed that the Microwave Limb

Sounder (MLS) on the Aura satellite observes decreases in

lower stratospheric HCl concentrations in the Arctic vortex

each spring; and in the spring of 2011, HCl concentrations

were anomalously low for a prolonged period. Figure 9c

shows the final inlying ACE-FTS HCl data in the Arctic,

which are consistent with the MLS findings. No instances

have been found in which the unnatural outlier detection sys-

tem outright rejects these types of phenomena. When sudden,

extreme changes do occur, the rejection of potential natural

outliers has been minimized, the result of which is that the

rejection of the detected unnatural outliers has an insignifi-
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Figure 8. The final inlying data (blue dots) and unnatural outliers (red dots) for all ACE-FTS HCN data at 9.5 km (left) and SF6 data at

19.5 km (right). The top panel shows all data, the middle panel is the same as the top panel but zoomed in for clarity, and the bottom panel is

all data, excluding the unnatural outliers.

cant effect on the mean. The disadvantage of not screening

out rare extreme events, however, is that this method is less

likely to catch sporadic systematic instrument or processing

errors. Therefore, continual monitoring of both the rejected

and non-rejected data statistics is necessary to determine if

any such errors have occurred.

Table 1 shows what percentage of ACE-FTS level 2 v3.5

profiles contain at least one detected outlier (by either step).

For any given species, if all profiles that contained at least

one outlier are rejected, less than 6 % of the total number of

profiles will be omitted.

3 Conclusions

A two-step process has been developed in order to screen

all ACE-FTS level 2 data for physically unrealistic outliers.

The first step fits an EDF, the superposition of three Gaussian

distributions, to actual distributions. This fit is done in log-

space. Data in the tails of the distributions where the proba-

bility of finding a data point is less than the tolerance level

are determined to be extreme unnatural outliers. The second

step iteratively takes the 15 day running median and MeAD

and screens for moderate seasonal unnatural outliers. Data

that are further than 10 times the MeAD from the median are

determined to be moderate outliers.
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Figure 9. The final inlying data for ACE-FTS: (a) Arctic NO at

55.5 km; (b) mid-latitude H2O at 14.5 km; and (c) Arctic HCl at

18.5 km.

Using these methods to screen the ACE-FTS data for un-

natural outliers, a flagging system has been implemented to

give ACE-FTS level 2 data users a guide for how best to use

the data. Each VMR data point in each profile is flagged with

an integer from 0–9. Table 2 gives the definition for each flag

value. Any data with a 0 flag are recommended for use. In

previous versions, data users were recommended that they

filter out data where the percent error (the retrieval statistical

fitting error divided by the retrieved value) is either greater

than 100 % or less than 0.01 %; for legacy reasons, these

data have been given a flag value of 1. It is recommended

that data points with a corresponding flag greater than 2 be

removed before any analysis is performed. This screening

method alone may be adequate when only looking at one

Table 2. Definition of flag values associated with ACE-FTS level 2

data.

Flag Definition

value

0 No known issues with data

1 Percent error is not within 0.01–100 %, and no other

category of flag applies

2 Not enough data points in the region to do statistical

analysis, and percent error is within 0.01–100 %

3 Not enough data points in the region to do statistical

analysis, and percent error is not within 0.01–100 %

4 Moderate unnatural outlier detected from running

MeAD, percent error within limits

5 Extreme unnatural outlier detected from EDF, per-

cent error within limits

6 Unnatural outlier detected and percent error is out-

side of limits

7 Instrument or processing error

8 Error fill value of −888 (data is scaled a priori)

9 Data fill value of −999 (no data)

altitude level, however, profiles that contain an outlier at a

given altitude level may also be compromised at lower alti-

tude levels. Therefore it is recommended that any profile that

contains a flag between 4 and 7 (inclusive) be removed be-

fore analysis.

At certain altitude levels for a given species, the data can

be either noisy, with a significant number of negative values,

or have a strong negative bias. In either case, since the ACE-

FTS retrieval allows for negative concentrations, it is possi-

ble for valid data to have values close to zero, both positive

and negative. When values are systematically near zero, the

percent error becomes extremely large. Therefore, in these

situations, screening the data based on the percent error may

introduce a bias in the data. As such, before analysis, remov-

ing data that has a corresponding flag value of 1 is only rec-

ommended at altitude levels where the overwhelming major-

ity of data points have a VMR value greater than zero.

Since the outlier detection methodology was approached

with a philosophy that it is better to leave in unnatural out-

liers than to remove natural outliers, there are outliers that

have gone unflagged – especially in data sets that are inher-

ently noisy and at low altitudes (below ∼ 10 km). Level 2

data users should use the defined quality flags as a starting

point for screening the data and be aware that some unnat-

ural outliers may still exist that could be screened out prior

to analysis. If data users are using the MAD in an attempt to

further screen the ACE-FTS level 2 data, for best results it is

advised that they ensure that the distribution of the data they

are screening is not multimodal nor heavily skewed.

The flag values for all v3.5 data are now available for

download on the ACE-FTS website, and v2.5 flag values are

available upon request from the lead author and will soon be

www.atmos-meas-tech.net/8/741/2015/ Atmos. Meas. Tech., 8, 741–750, 2015
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made available for download on the ACE-FTS website. It is

currently expected that similar flags will be a standard prod-

uct within the level 2 data of all future products.
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