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Abstract: AIUS (Atmospheric Infrared Ultraspectral Sounder) is an infrared occultation spectrometer
onboard the Chinese GaoFen-5 satellite, which covers a spectral range of 2.4–13.3 µm (750–4100 cm−1)
with a spectral resolution of about 0.02 cm−1. AIUS was designed to measure and to study the
chemical processes of ozone (O3) and other trace gases in the upper troposphere and stratosphere
over the Antarctic. In this study, the AIUS retrieval methodology is described. A comparison between
AIUS measurements and simulated spectra illustrates that AIUS measurements agree well with the
simulated spectra. To first evaluate the reliability of the AIUS retrieval algorithm, three retrieval
O3 experiments were performed based on ACE-FTS (Atmospheric Chemistry Experiment—Fourier
transform spectrometer) observed spectra. A comparison with the ACE-FTS official products shows
that the relative difference of these three retrieval experiments was mostly within 10% between 20
and 70 km. These retrieval experiments demonstrate that the retrieval algorithm described in this
study provided reliable results and reliably. Furthermore, O3, H2O, and HCl profiles were retrieved
from 24 orbits of AIUS measurements and compared with the official Aura /MLS (Microwave Limb
Sounder) level-2 v4.2 profiles. The relative difference was mostly within 10% (about 0.02–0.4 ppm)
between 18 and 58 km for the O3 retrieval, within 10% (0–0.5 ppm) between 15 and 80 km for the
H2O retrieval, and within 10% (about 0.1 ppb) between 30 and 60 km for the HCl retrieval. A good
agreement in the retrieved trace gas profiles was reached between AIUS and MLS.

Keywords: AIUS; occultation; retrieval algorithm; microwindows; ozone

1. Introduction

The annual occurrence of the Antarctic ozone hole has been well documented. For studying
ozone recovery, many efforts have been made to understand the chemical and dynamical processes
around the Antarctic [1–3]. Occultation and limb sounding techniques have provided important ways
to remotely observe the Earth’s middle atmosphere. These measurements have greatly improved
our understanding of the chemical processes in the upper troposphere and stratosphere by providing
profile information [1,2,4,5]. As compared to nadir-viewing measurements, occultation/limb sounding
measurements have a higher vertical resolution, which can be used to derive the vertical distribution of
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atmospheric components. Furthermore, high-resolution atmospheric mid-infrared spectra are suitable
for the detection of many trace species, since a wide variety of vibrational–rotational absorption bands
are found within this spectral range. Recently, many occultation observation/limb sounding sensors have
been developed and have provided abundant profiles of trace gases, such as O3, CO, H2O, NO, etc. [4–9].

AIUS (Atmospheric Infrared Ultraspectral Sounder) is one of six payloads onboard the Chinese
GaoFen-5 (GF5) satellite that was launched successfully on May 9, 2018 (Beijing local time). AIUS is the
first occultation spectrometer developed in China, with the aim of detecting the trace gases over the
Antarctic. AIUS operates in a solar synchronous orbit, with a nominal height of 705 km. The instrument is
a Fourier transform infrared spectrometer and its main objective is to measure O3 and other species in the
stratosphere and upper troposphere in order to study the ozone temporal variations over the Antarctic.

The main objective of this paper is to introduce the trace gas retrieval algorithm developed
for AIUS and to discuss the first results of O3, H2O, and HCl retrieval from AIUS. In Section 2,
the AIUS instrument and the corresponding measurement characteristics are presented. Section 3
details the retrieval methodology, including the employed inversion algorithm, selection of fitting
windows, and the integrated atmospheric profiles. In Section 4, ACE-FTS (Atmospheric Chemistry
Experiment—Fourier transform spectrometer) measurements are used to retrieve O3 profiles to assess
the retrieval algorithm. Then, O3, H2O, and HCl profiles retrieved from AIUS measurements are
compared with the MLS (Microwave Limb Sounder) products.

2. AIUS Instrument and Measurements

2.1. Instrument

AIUS is a Michelson interferometer for measuring occultation transmittance spectra in the middle
and upper atmosphere. Its interferometer model is depicted in Figure 1. AIUS has the characteristics
similar to those of ACE-FTS. Both instruments have a spectral resolution of 0.02 cm−1. AIUS covers a
spectral range from 750 cm−1 to 4100 cm−1, while ACE-FTS covers 750–4400 cm−1. AIUS is a dual-band
system composed of MCT (mercury cadmium telluride, 750–1850 cm−1) and InSb (1850–4160 cm−1).
The instrument covers an altitude range from 8 to 100 km and has a field of view (FOV) of 1.25 mrad.
A brief description of the two instruments is shown in Table 1 [4,10].
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Figure 1. AIUS interferometer model [11]. 
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Figure 1. AIUS interferometer model [11].

AIUS observes atmospheric parameters remotely by recording solar transmittance spectra as it
tracks the Sun and scans through the atmosphere (see Figure 2). The Sun tracking is carried out by a
specific Sun-tracking camera. The position of the AIUS instrument is fixed. However, the center field
of view of the AIUS can be adjusted using a two-dimensional pointing mechanism. The center position
of the Sun is acquired using real-time processing of the Sun-tracking image, which is fed back to the
two-dimensional pointing mechanism, and the pointing mechanism is adjusted so that the central
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field of view of the detector always points to the center position of the Sun. The uncertainty of the
Sun-tracking is within 25 µrad [10].

Table 1. Instrument characteristics of GaoFen5-AIUS and ACE-FTS.

Parameters AIUS ACE-FTS

Orbit inclination 98.218◦ 74◦

Orbit altitude 705 km 650 km
Observation mode Solar occultation Solar occultation

Spectra range 750–4100 cm−1 750–4400 cm−1

Spectral resolution 0.02 cm−1 0.02 cm−1

Field of view (FOV) 1.25 mrad 1.25 mrad

Signal to noise ratio (SNR)
1000–2000 cm−1: 200–350

2000–3200 cm−1: >300
other spectral bands: 100–200

>300 over most of the
spectral band

Remote Sens. 2019, 11, x FOR PEER REVIEW 3 of 18 

 

Spectral resolution 0.02 cm
−1

 0.02 cm
−1

 

Field of view (FOV) 1.25 mrad 1.25 mrad 

Signal to noise ratio 

(SNR) 

1000–2000 cm−1: 200–350 

2000–3200 cm−1: >300 

other spectral bands: 100–

200 

>300 over most of the spectral 

band 

AIUS observes atmospheric parameters remotely by recording solar transmittance spectra as it 

tracks the Sun and scans through the atmosphere (see Figure 2). The Sun tracking is carried out by a 

specific Sun-tracking camera. The position of the AIUS instrument is fixed. However, the center 

field of view of the AIUS can be adjusted using a two-dimensional pointing mechanism. The center 

position of the Sun is acquired using real-time processing of the Sun-tracking image, which is fed 

back to the two-dimensional pointing mechanism, and the pointing mechanism is adjusted so that 

the central field of view of the detector always points to the center position of the Sun. The 

uncertainty of the Sun-tracking is within 25 μrad [10]. 

 

Figure 2. AIUS measurement geometry. 

AIUS travels in a Sun-synchronous orbit and observes in a forward direction with a deviation 

angle from the along-track orbit. The deviation angle varies between 0 and 25°. The occultation 

spectra are scanned in an upward direction from the time of the Sun rising above the horizon to the 

time of the Sun moving out of the atmosphere. One orbit scan includes the measurements inside and 

outside of the atmosphere and the scan of deep space. It takes about two seconds in every scan at 

one tangent point. A scan sequence is acquired from the lowest altitude (about 8 km) to the highest 

altitude (about 100 km) in the atmosphere. Then, the sensor moves outside of the atmosphere and 

detects the solar spectra. Subsequently, the pointing mirror points to the deep space for producing 

the cold reference, which is used to calibrate the systematic errors. A complete orbit scan takes 

about three minutes. The measurements are repeated for each sunrise. AIUS measurements are 

mainly over the Antarctic. Figure 3 shows the latitude coverage of AIUS that is between 55°S and 

90°S. 

-180      -150      -120        -90        -60        -30          0           30         60          90         120        150      180

90

60

30

0

-30

-60

-90

L
atitu

d
e [ °]

Longitude [°]
 

Figure 3. The coverage of AIUS measurements. 

Figure 2. AIUS measurement geometry.

AIUS travels in a Sun-synchronous orbit and observes in a forward direction with a deviation
angle from the along-track orbit. The deviation angle varies between 0 and 25◦. The occultation spectra
are scanned in an upward direction from the time of the Sun rising above the horizon to the time of the
Sun moving out of the atmosphere. One orbit scan includes the measurements inside and outside of
the atmosphere and the scan of deep space. It takes about two seconds in every scan at one tangent
point. A scan sequence is acquired from the lowest altitude (about 8 km) to the highest altitude (about
100 km) in the atmosphere. Then, the sensor moves outside of the atmosphere and detects the solar
spectra. Subsequently, the pointing mirror points to the deep space for producing the cold reference,
which is used to calibrate the systematic errors. A complete orbit scan takes about three minutes.
The measurements are repeated for each sunrise. AIUS measurements are mainly over the Antarctic.
Figure 3 shows the latitude coverage of AIUS that is between 55◦S and 90◦S.
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2.2. Measurement Spectra

The GF5-AIUS level 0 data is the interferometric data in a binary format. The level 1 data is stored in
HDF5 files and includes reconstructed spectra and processed auxiliary data. The AIUS level 0–1 processing
includes four steps. The first step is the acquisition and processing of auxiliary data. By unpacking
the auxiliary data package, information such as acquisition time, Sun position, and satellite position, is
acquired. The geometric parameters, height and latitude and longitude coordinates, are calculated from
the information of the Sun and satellite. The second step is to reconstruct the spectra from the original
interferogram. However, the observed spectra can be contaminated by spikes that are related to the
effect of energetic particles from space’s electromagnetic environment on orbits. The spike removal is
considered in level 1 processing. Non-linear behavior of the detectors is expected and the corresponding
correction is consolidated in-flight using data from the commissioning phase. After that, the FFT (fast
Fourier transformation) is performed to compute the spectra. The third step is to evaluate the spectra’s
quality using the standard deviation or mean value of the imaginary part of the calculated spectra by
adding an additional quality flag. The wavelength calibration (750–4100 cm−1) is carried out as well. First,
the influence of the Doppler effect (the frequency shift) is removed, and a linear relationship between the
sampling points of the Fourier transform spectrometer and the corresponding spectral coefficients is
established. The subsequent spectral calibration is performed using a polynomial fitting method [12,13].

The last step of level 1 processing is to calculate the transmittance, which is directly obtained
from DN (digital number) values. In addition to the observation of the Sun outside and inside the
atmosphere, GF5-AIUS also observes deep space to remove the instrumental emission. Commonly,
the transmittance τ(h,λ) at tangent point h can be calculated using the following equation:

τ(h,λ) =
D(h,λ) −B(λ)

S(λ) −B(λ)
(1)

where D(h,λ), S(λ), and B(λ) are the digital counts of the observation of the signal at tangent point h,
the solar radiation outside atmosphere, and the deep space signal, respectively.

After about seven months of the in-orbit test, AIUS have been continuously providing measurement
spectra. Figure 4 shows AIUS spectra observed on 8 January 2019. To have a deeper understanding
of the quality of the AIUS measurement spectra, the AIUS spectra are compared with the simulated
spectra. The atmospheric profiles used in the simulation are adopted from the integrated atmospheric
profiles, which will be described in Section 3.3. Figure 5 presents the comparison in the ranges of
1000–1200 cm−1, 1400–1600 cm−1, and 2800–3000 cm−1, which are used for the retrieval of O3, H2O,
and HCl, respectively. Figure 5a shows the comparison between 1000 cm−1 and 1200 cm−1 at 33.4 km.
Figure 5b,c shows the spectra between 1400 cm−1 and 1600 cm−1 at 18.6 km and between 2800 cm−1 and
3000 cm−1 at 26.1 km, respectively. The zoom-in windows clearly illustrate that the AIUS measurement
spectra agree well with the simulated spectra.
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Figure 5. The comparison between AIUS measurement spectra and the simulated spectra. (a) Spectra
(1000–1200 cm−1) at 63.5◦S6.9◦E on 1 January 2019; (b) Spectra (1400–1600 cm−1) at 63◦S80◦W on 21
December 2018; (c) Spectra (2800–3000 cm−1) at 64.7◦S142.48◦W on 1 January 2019.

3. Retrieval Methodology of AIUS

Accurate knowledge of pointing and p/T (pressure/temperature) information is important for the
high-precision quantitative retrieval of the abundances of atmospheric species from occultation-observed
transmittances. The tangent height correction for AIUS is carried out by employing the triangular
iteration with a tangential strides technique in a microwindow of N2 continuum absorption. Details of
the design and development of the tangent height correction algorithms are introduced in Zhu et al. [14].
Details about the p/T retrieval will be introduced in a separate paper about a validation of T profiles.

3.1. Spectral Microwindows of O3, H2O, and HCl

The spectral resolution of AIUS is about 0.02 cm−1. Because of this, the number of data points
from each absorption band becomes unrealistic for an efficient inversion process. One should also
avoid the effects from interfering chemical species for the retrieval of the target species to produce the
best information from the retrieval. Thus, the retrieval is performed using a set of narrow spectral
intervals (called “microwindows”) instead of an entire spectral band.

To select an appropriate set of microwindows, a sensitivity analysis with Jacobians is required.
First of all, the spectral points that are sensitive to the target gas at each cutting height and are not
sensitive to the interference gas according to the Jacobians of target and the interference species are
selected. Then, the selected spectral points are increased on the basis of information entropy to generate
a series of continuous window [15]. Finally, all the selected spectral microwindows at every tangent
height are combined.
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Figure 6 shows the selected microwindows for O3, H2O, and HCl retrievals, respectively. For O3

retrieval, about 15 spectral microwindows are selected, covering from 5 to 95 km. The microwindows of
1020–1070 cm−1 are more sensitive at higher altitudes, while others are more sensitive at lower altitudes.
Thirteen spectral microwindows are selected for H2O retrieval in the range of 1200–1700 cm−1, covering
about 8–100 km. Two spectral microwindows are found in 1200–1250 cm−1 and 11 microwindows are
found in 1400–1600 cm−1. Eight spectral microwindows covering from 8 km to 85 km are selected
for HCl, mainly in the range of 2800–3000 cm−1. The microwindows for each retrieval target contains
about 150–200 spectral points.
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3.2. Inversion Model

Accurate modelling of the radiative transfer through the atmosphere plays an important role in
the inversion. The forward model adopted in the retrieval algorithm of AIUS is the RFM (reference
forward model) from Dudhia [16], with the latest release being version v4.36 (http://eodg.atm.ox.ac.uk/

RFM/index.html). Von Clarmann et al. [17] have compared five forward models including the RFM.
The inter-comparison experiment showed that an overall agreement between all models was reached,
and RFM is proven to produce reliable simulations.

The inversion algorithm employed in this study is based on the OEM (optimal estimation method)
proposed by Rodgers [18]. The OEM retrieval framework has been widely applied to the inversion of
atmospheric state parameters using infrared and microwave remote sensing measurements, with nadir,
occultation, or limb viewing [19–24]. OEM stabilizes the inversion process by taking into account
the statistical information about the atmospheric variability, which has been investigated by many
studies [25–31].

The inversion scheme uses the LM (Levenberg–Marquardt) method for solving the underlying
least-squares fitting problem. By introducing a constraint factor γ, the next iteration is yielded using:

Xi+1 = Xi +
[
(1 + γ)S−1

a + KT
i S−1

e Ki
]−1
·

{
KT

i S−1
e [Y− F(X)] − S−1

a [Xi −Xa]
}

(2)

The inverse of the solution covariance in Equation (2) is given by:

S−1
x = S−1

a + KTS−1
e K (3)

The cost functions C(X) is given by:

C(X) = [(Y− F(X))TS−1
e (Y− F(X)) + (X−Xa)

TS−1
a (X−Xa)]/ny (4)

where F is the forward model, Y is a vector of observations, X is the state of the atmosphere, Se is the
covariance matrix of the observation error, and K is the matrix of the weighting function. The a priori
state vector is denoted by Xa, with its covariance matrix Sa. ny is the length of vector Y.

In the AIUS retrieval scheme, the characteristics of AIUS have been fully taken into account when
determining the factor γ and the covariance matrix Sa First, retrieval experiments are made based on
many simulated spectra and AIUS observed spectra to decide an optimal γ. After a statistical analysis,
the factor of γ is defined as a linear scaled function to the cost function and is updated at each iteration:

γi = a/C(Xi) (5)

where a is a constant but changes for different atmospheric species.
The definition of the a priori covariance matrix Sa follows Gaussian statistics and considers the

correlation between different components of the state vector and the forward model vector [31].
Different types of the correlation functions [32] for computing the correlation have been tested based
on the AIUS measurement spectra. In this study, we employed the linear correlation function:

Sa(i, j) = max {0,σ(i)σ( j)

1− (
1− e−1

)2
∣∣∣z(i)− z( j)

∣∣∣
lc(i) − lc( j)


 (6)

where i and j are position indexes, z is the position, lc is the correlation length, and |*| signifies the
absolute value. σ is the standard deviation calculated from the a priori profiles.

3.3. Integrated Atmospheric Profiles

The forward model generates a numerical simulation of measurements based on the given
atmospheric state. In other words, the accuracy of the simulated measurements depends on the

http://eodg.atm.ox.ac.uk/RFM/ index.html
http://eodg.atm.ox.ac.uk/RFM/ index.html
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reliability of the atmospheric parameters used in the forward model. In the retrieval scheme, a dataset
of integrated atmospheric profiles based on MLS (Microwave Limb Sounder) level 2 products, ACE-FTS
Climatology-Version 3.5 [33], and the AFGL (Air Force Geophysics Laboratory) atmospheric models
was generated.

The MLS level 2 (v4.2) products between 2014 and 2016 were considered. The species profiles
are classified and stored month by month for each set of products. Then, the monthly mean profiles
are acquired and classified into different coordinate grids, which is discretized with a 5◦ latitude and
30◦ longitude spacing. That is, both of MLS and ACE-FTS datasets are classified by a monthly and
geolocation grid. A diagram for constructing the integrated atmospheric profiles is shown in Figure 7.
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The next step was to combine the two sets of profiles. Since ACE-FTS and AIUS have similar
instrument characteristics, the ACE-FTS product was chosen in the case that the profile of a particular
species at the same geolocation and time can be found in both ACE-FTS and MLS datasets. Finally,
the remaining species were read from the AFGL dataset. The profiles imported from the AFGL dataset
include NH3, HBr, HI, PH3, H2S, F11, F12, F13, F21, F22, F114, F115, and HNO4. These species profiles
from FASCOD (Fast Atmospheric Signature Code) Models 1–6 are resampled and integrated into the
monthly geographic grids. In the end, the integrated atmospheric profiles dataset was produced.

4. Results

4.1. Assessment of the Retrieval Algorithm

Before performing the retrievals for the AIUS measurements, the retrieval experiments were
carried out based on the simulated spectra and ACE-FTS measurements to test and verify our algorithm.
We had no detailed parameters of ACE-FTS instrument, such as instrument line shape, the antenna
response, etc. Thus, the parameters of AIUS were adopted to perform the retrieval experiments since
the two instrument characteristics were similar. We adopted three ACE-FTS level 1 data sets to perform
the O3 retrieval experiments. Information of the ACE-FTS level-1 data used in this study is listed in
Table 2. All the a priori profiles of O3 and the other species were taken from the dataset of integrated
atmospheric profiles described in Section 3.3.
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Table 2. Information of ACE-FTS Level 1 products.

Data ID Latitude [◦] Longitude [◦] Date

43544 63 75 14 September 2011
38154 63 −73 13 September 2010
43611 70 −119 18 September 2011

The retrieval profiles and the relative differences are shown in Figure 8. The solid lines represent
the O3 profile retrieved by the AIUS retrieval algorithm and the dotted lines are ACE-FTS O3 products,
which were resampled to the retrieval grid. Only one pair of the retrieval and ACE-FTS official profiles
is presented in Figure 8a, indicating that the shape of the retrieval O3 profiles agreed well with that of
the ACE-FTS level 2 product. The relative difference in Figure 8b illustrates that the relative difference
between these three retrieval experiments was mostly within 10% between 20 km and 70 km for every
pair of profiles, with some points reaching 15%–30%. The relative difference was larger below 20 km
and over 70 km because of the uncertainties in the measurements. The bias of the ACE-FTS O3 products
was 1–8% in the stratosphere (16–44 km) and reached up to 40% (20% on average) above 45 km [34,35].
The corresponding averaging kernels are plotted in Figure 9, which reveal that the retrieval information
mainly came from the measurements in the stratosphere. These retrieval experiments demonstrated
that the performance of the retrieval algorithm was stable and delivered similar results compared to
those official products using ACE-FTS data.
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4.2. Retrieval from AIUS and Discussion

AIUS observes in a forward direction and scans one sequence (measurements from the lowest
to the highest tangent altitudes) from one orbit. In this study, 24 orbital measurements were used
to perform O3, H2O, and HCl retrievals. These 24 measurements were acquired during the period
from 21 December 2018 to 8 January 2019. The orbit IDs of these measurements are 003301, 003331,
003337, 003341, 003344, 003366, 003367, 003370, 003372, 003385, 003387, 003399, 003403, 003416, 003424,
003429, 003435, 003458, 003479, 003480, 003487, 003489, 003504, and 003566. The latitudes of these
measurements varied between 62.8◦S and 65.5◦S. The retrieval configurations are presented in Table 3.
The interfering molecules for O3, H2O, and HCl retrievals are also listed in Table 3.

The retrieval profiles of AIUS are compared with the official AURA/MLS level-2 v4.2 profiles.
All MLS profiles for comparisons were chosen according to their quality and convergence flags [36].
In the AIUS retrieval configuration, the retrieval grid was identical to the tangent height grid, which
means that the retrieval grid varied between these 24 measurements. So far, the effective altitudes of
AIUS measurements are from about 12 to 90 km. For a comparison of the mean profiles, both retrieved
AIUS and MLS profiles were resampled to the same altitude grids, from 12 km to 90 km with 2 km
steps below 30 km and 3 km steps over 30 km. MLS products were represented as the mixing ratios
versus pressure. The MLS altitudes were obtained from the geopotential height products.

Table 3. Retrieval configuration.

Parameters Retrieval Configuration

Spectroscopic database Hitran 2016 [37]
Continua used O2, H2O, N2 [38–40]

Retrieval altitude grids/km Observation grids
Altitude grids in the forward model 0–100 km with 1 km spacing

The a priori profile Integrated atmospheric database

The interfering molecules for O3
N2, O2, CO, CO2, NH3, OCS, O3, SO2, H2O, N2O, CH4, CH3Cl,
H2O2, COF2, HNO3, CH3OH, F11, F12, F13, F22, F113, F114, F115

The interfering molecules for H2O
N2, O2, CO, CO2, HNO3, H2O2, COF2, HCl, HOCl, NH3, OCS,

O3, SO2, H2O, N2O, NO, C2H2, NO2, CH4, CH3Cl, HCN,
CH3OH, F11, F12, F13, F22, F113, F114, F115, N2O5

The interfering molecules for HCl O3, H2O, CO2, COF2, N2O, NO, CH4, H2CO, HCl, NO2, OCS,
CH3Cl, CH3OH

4.2.1. O3 Retrieval Results and Comparisons

O3 profiles were retrieved from the AIUS measurement spectra from 24 measurements and
compared to the MLS O3 profiles. Figure 11 shows a typical O3 retrieval example based on AIUS
measurements. According to the data quality document [36] and validation of O3 product version
2.2 [41], the uncertainties of MLS O3 profiles in the stratosphere are often about 5–10%, but over 20%
when the atmospheric pressure is <0.1 hPa.

From the orbit 003301 measurement, the O3 profile was retrieved between 12 km and 90 km.
The retrieval of the AIUS O3 profile is presented as a red line, the a priori profile is shown as the
black line, and the MLS profile is shown as the blue line, which was resampled to the retrieval grid.
Figure 10a shows that the retrieval AIUS O3 profile was obviously different from the a priori profile
and agreed rather well with the MLS O3 profile in the stratosphere. The relative difference between the
retrieval and MLS O3 products in Figure 10b illustrates that the relative difference between the AIUS
and MLS profiles was 3–8% between 18 and 50 km, 20–40% at 15–18 km, and mostly 20–40% from
55 km to 90 km, but occasionally greater than 40%. The relative difference between the a priori and
MLS profiles was within 15% below 50 km, and about 20–55% above 50 km. Figure 10c is the retrieval
averaging kernel for the orbit 003301 retrieval. The kernel reached about 0.8–1 at 20–80 km, which
means that the retrieval information mainly came from the measurements.
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Figure 10. O3 retrieval from AIUS measurements on orbit 003301: (a) retrieval, a priori, and MLS L2
profiles; (b) relative difference between the retrieval and MLS L2 profiles, and the a priori and MLS L2
profiles; and (c) the averaging kernel.

O3 profiles from 24 orbital AIUS measurements were retrieved. Since these measurements were
all acquired near 65◦S and over about 20 days, the comparison was made between the mean profile
of the 24 pairs of AIUS and the equivalent MLS measurements. Figure 11a shows the mean profiles
from AIUS and MLS with the corresponding standard deviations, which are shown as error bars.
The standard deviations of the AIUS profiles were about 0.4 ppm between 30 and 40 km, which were
bigger than those of the MLS profiles. This was because the two AIUS profiles retrieved from orbits
003504 and 003566 had lower peak values. The relative and absolute differences of the mean profiles of
AIUS and MLS are presented in Figure 11b. It indicates that the relative difference was within 10%
(about 0.02–0.45 ppm) between 15 and 58 km, 20–30% for 60–70 km, and 80–90 km, respectively.
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Figure 11. A comparison of O3 profiles between AIUS and MLS: (a) mean O3 profiles and standard
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4.2.2. H2O Retrieval Results and Comparisons

The H2O profiles were also retrieved from AIUS measurements and compared with MLS H2O v4.2
profiles. For MLS H2O v4.2 profiles, the accuracy was within 10% between 100 hPa and 0.1 hPa [36].
An example of H2O retrieval is presented in Figure 12.
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Figure 12. H2O retrieval from AIUS measurement of orbit 003367: (a) AIUS, a priori, and MLS L2
profiles; (b) relative difference between retrieval and MLS L2 products, and the a priori and MLS L2
profiles; and (c) the averaging kernel.

Figure 12a shows the AIUS H2O, a priori, and MLS H2O profiles. The retrieval AIUS profile had
a large deviation from the MLS profile between 70 and 80 km since the MLS profile had a sudden
increase there. For this measurement pair, the relative difference between AIUS and MLS profile or
between the a priori and MLS profiles was mostly with 10% between 20 and 70 km, as can be seen from
Figure 12b. The averaging kernel in Figure 12c indicates that the AIUS retrieval was mostly based
on the measurement information, not the a priori profile itself. The comparison of mean H2O profiles
between AIUS and MLS is shown in Figure 13. Only 23 pairs of AIUS and MLS profiles were used
to make this comparison because the quality of the MLS profile from 8 January 2019, was below the
required threshold. The mean AIUS H2O profile had a good agreement with the mean MLS profile.
The standard deviation of the AIUS profiles was greater than that of the MLS profiles below 20 km,
while it was smaller between 70 and 90 km. Figure 13b presents the absolute and relative differences
between the AIUS and MLS profiles. The AIUS profiles mainly had a negative deviation from MLS
profiles below 70 km. The relative difference was within 10% (0–0.5 ppm) between 15 and 80 km.
However, the relative difference could reach 20–40% above 85 km and below 15 km.
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Figure 13. A comparison of H2O profiles between AIUS and MLS: (a) mean H2O profiles and standard
deviations of AIUS (red) and MLS (blue); and (b) relative and absolute difference of mean H2O profiles
between AIUS and MLS, with red for absolute difference and blue for relative difference.

4.2.3. HCl Retrieval Results and Comparisons

Figures 14 and 15 present a typical HCl retrieval and the comparison of mean HCl profiles between
AIUS and MLS. It has been reported that the accuracy of the MLS HCl v4.2 profiles is about 10% between
20 hPa and 0.32 hPa, and 10%–40% (occasionally more than 40%) between 100 hPa and 46 hPa [36].
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Figure 14. HCl retrieval from AIUS measurement for orbit 003458: (a) AIUS, a priori, and MLS L2
profiles; (b) relative difference between the retrieval and MLS L2 products, and the a priori and MLS L2
profiles; and (c) the averaging kernel.
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Figure 15. A comparison of HCl profiles between AIUS and MLS: (a) mean HCl profiles and standard
deviations of AIUS (red) and MLS (blue); and (b) relative and absolute difference of mean HCl profiles
between AIUS and MLS, with red for absolute difference and blue for relative difference.

The AIUS and MLS HCl profiles in Figure 14a capture a similar pattern. Figure 14b illustrates
that the difference between AIUS and MLS profiles was almost within 10% between 20 and 90 km,
except for three altitude levels, which reached about 20%. The relative difference between the a priori
and MLS profiles was within 15% above 30 km and about 10–40% below 30 km. The averaging
kernel below 60 km was about 0.5–0.8. However, it became wider above 60 km, which meant that
the retrieval information mainly came from the a priori profile. It is also reported by the official data
quality document that MLS HCl profiles are unsuitable for scientific use over 0.32 hPa [36]. Therefore,
the comparison was made between 12 and 58 km (near 0.32 hPa). Figure 15a shows the mean HCl
profile and standard deviations of AIUS and MLS. The standard deviations are presented as error bars.
The HCl profiles from the two instruments agreed quite well. The standard deviations of AIUS profiles
(red solid line) became bigger below 20 km, while they were smaller at other altitudes. Figure 15b
indicates that the relative difference was within 10% (about 0–0.3 ppb) between 20 and 58 km, and was
about 10–20% (about 0.2–0.35 ppb) between 10 and 20 km. AIUS HCl profiles mainly had a positive
deviation from the MLS profiles between 15 and 58 km.

5. Discussion

ACE-FTS measurements were used for the assessment of the AIUS retrieval algorithm. The relative
differences between the retrieval O3 profiles and the official ACE-FTS products were occasionally
greater than 40% below 20 km and over 70 km. The main reason was that the bias of the official
products at lower and higher altitudes was greater than those for the stratosphere. Another important
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reason is that the AIUS instrument parameters were used to retrieve the O3 profile from ACE-FTS
measurements, and the uncertainty in the AIUS parameterization can affect the retrieval.

The profiles retrieved from the AIUS measurement were all above 10 km since the quality of the
measurements below 10 km were unacceptable because of the large noise level. The comparisons
between the AIUS and MLS retrievals showed that the AIUS O3 profiles agreed well with the MLS
profiles between 15 km and 58 km, while larger differences could mostly be found above 60 km.
One reason for the larger relative difference above 60 km may be the larger uncertainties of the MLS
profile above 60 km. Another important reason is that the AIUS measurements had a large noise level
above 60 km in the ozone fitting microwindows. AIUS observes the atmosphere during the sun rising.
The local times of the 24 orbital AIUS observed spectra were about 2:00. However, some MLS profiles’
local times were about 0:40, while the others were about 15:00. Thus, one more possible reason for
these uncertainties may be the diurnal variation of O3, since the acquisition local times of some pairs of
AIUS and MLS were different.

The comparisons also revealed that the AIUS retrievals had larger uncertainties at lower altitudes
for the O3, H2O, and HCl profiles. One possible factor would be that both retrievals were insensitive to
the measurement information in the troposphere and mainly relied on the a priori profile, which can
be seen using the averaging kernel at lower altitudes in Figure 10, Figure 12, and Figure 14. Another
reason might be the uncertainties introduced by the interfering species profiles. One more reason might
come from the tangent height correction, which had larger uncertainties below 15 km. Nevertheless,
the quality of the AIUS observed spectra can still be improved as the level 1 processing is currently
under an optimized level.

6. Conclusions

This study has introduced a retrieval algorithm developed for an infrared occultation spectrometer
called AIUS, which is on board the Chinese GaoFen-5 satellite. For the first time, O3, H2O, and HCl
profiles were retrieved from AIUS observed spectra, and the retrieved profiles were compared with the
official AURA/MLS Level-2 products.

Before performing retrievals from real AIUS measurements, the retrieval experiments were carried
out to assess the retrieval algorithm based on ACE-FTS measurements. The experiments demonstrate
that the retrieval algorithm is reliable and works effectively.

O3, H2O, and HCl retrievals were performed using AIUS 24 orbital measurements. The comparisons
between AIUS and MLS indicated that the relative difference was within 10% at 18–58 km for O3 profiles,
within 10% at 15–80 km for H2O profiles, and within 10% at 30–60 km and 10–20% at 16–30 km for
HCl profiles.

In future work, further studies are required to improve the data quality of the AIUS measurements
at low altitudes. The retrieval algorithm will be improved as well and more trace gases, such as CH4,
CO2, OCS, etc., will be retrieved. In addition, the influence of interfering species on the retrieval will
be probed. An extensive retrieval error characterization will be analyzed. Further validations will
be performed by comparing between MLS and other datasets using large amounts of measurement
spectra over an extensive temporal and spatial range.
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