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a b s t r a c t 

Clouds and aerosols play a vital role in the Earth’s climate. Detecting polar mesospheric clouds, polar 

stratospheric clouds and aerosols is useful for monitoring climate change and atmospheric chemistry. 

ACE (Atmospheric Chemistry Experiment) satellite data are used to provide an infrared spectral atlas of 

polar mesospheric clouds, three types of polar stratospheric clouds (nitric acid trihydrate, sulfuric/nitric 

acid ternary solutions, and ice), cirrus clouds, stratospheric smoke from fires and sulfate aerosols. Most 

of the example spectra have been modeled using the appropriate optical constants and the calculated 

extinction of sunlight by the particles. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

The ACE satellite (also known as SCISAT) was launched into 

ow Earth orbit in August 2003 for a nominal 2-year mission [1] . 

he primary instrument on ACE is a high resolution (0.02 cm 

−1 ) 

nfrared Fourier transform spectrometer (ACE-FTS), operating in 

he 750–4400 cm 

−1 range. The FTS measures sequences of atmo- 

pheric transmission spectra during sunrise and sunset in the limb 

eometry (solar occultation technique). These spectra are analyzed 

n the ground [2] to provide altitude volume mixing ratio (VMR) 

rofiles for atmospheric gasses [3] with a typical vertical reso- 

ution of 3 km. The original primary mission goal was to study 

zone in the stratosphere and upper troposphere, but because of 

he longevity ACE has many additional achievements [1] . For ex- 

mple, ACE has measured trends in atmospheric composition for 

4 gases [3] ; changes in greenhouse gas concentrations are the pri- 

ary cause of climate change. 

Although the ACE mission has focused mainly on trace gases, 

he atmospheric spectra also contain observations of condensed 

hases such as clouds and aerosols. Liquid and solid particles have 

road spectral features compared to gases and appear mainly as 

art of the “baseline” once gas phase components are removed. 

his was recognized early in the mission and for example, ACE 

rovided the first broad-band spectra of polar mesospheric clouds 
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PMCs) [4] . These spectra confirmed that PMCs are small non- 

pherical ice particles [ 4 , 5 ]. The increasing occurrence of PMCs is 

n indicator of climate change. Early observations of cirrus clouds 

ere carried out by Eremenko et al. [6] . 

In addition to the infrared spectra from the ACE-FTS, aerosols 

nd clouds are also being monitored by two filtered solar imagers 

t 0.525 and 1.02 μm [1] . These imagers provide altitude profiles 

f aerosol and cloud extinction. 

Infrared spectra of smoke particles injected into the strato- 

phere by pyrocumlonimbus (pyroCb) events have been published 

7] . These smoke particles from extreme wildfires alter the chem- 

stry of the stratosphere and can deplete ozone [8] . 

Recently, ACE spectra of sulfate aerosols have been analyzed in 

onsiderable detail focusing on the eruption of the Raikoke volcano 

9] . Stratospheric sulfate aerosols generally cool the surface of the 

arth and warm the stratosphere [10] . 

Recently, we have started to analyze the entire ACE record from 

004 to the present for spectral signatures of clouds and aerosols. 

verall ACE has now observed about eight different types of cloud 

nd aerosol spectra (not counting mixtures), broadly characterized 

s PMCs, stratospheric smoke, sulfate aerosols, cirrus clouds, polar 

tratospheric clouds (PSCs) and volcanic ash. The raw ACE spectra 

ave been corrected to remove gas phase features and constitute a 

emarkable set of actual broad band spectral examples. In almost 

ll cases we have been able to simulate the spectra to determine 

omposition and particle size. This paper therefore presents an “at- 

as” of ACE spectra of clouds and aerosols. 

https://doi.org/10.1016/j.jqsrt.2022.108361
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jqsrt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2022.108361&domain=pdf
mailto:jsorense@odu.edu
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. Methods: residual ACE-FTS spectra 

Residual spectra are generated by dividing the measurement 

y a calculated spectrum, where the calculated spectrum con- 

ists of all known gas-phase contributions to the spectrum. This 

alculation employs the latest cross sections for large molecules 

nd a line list containing spectroscopic constants based primar- 

ly on HITRAN (high resolution transmission molecular absorption 

atabase) 2016 [11] . Volume mixing ratio profiles are taken from 

CE-FTS processing version 4.1/4.2 results [2] for the given occul- 

ation. The calculated spectrum also includes collision induced ab- 

orption contributions to the spectrum from N 2 [12] and O 2 [13] , 

s well far wing contributions from the ν3 band of CO 2 [14] . 

Features in the residual spectrum will consist of anything con- 

ributing to the measurement that was not included in the calcu- 

ated spectrum, such as aerosols [ 7 , 9 ], including ubiquitous back- 

round sulfate aerosols. Unfortunately, residual spectra are pol- 

uted by features from a number of HNO 3 bands that are miss- 

ng from the HITRAN 2016 line list, plus systematic residuals that 

rise from ignoring non-Voigt effects such as speed-dependence or 

ine-mixing in the calculated spectrum. These systematic features 

an be ignored, excluding the affected wavenumber regions from 

he analysis if they excessively impact the analysis, or they can be 

emoved through calibration by an occultation under background 

onditions. Choosing a calibration measurement featuring similar 

onditions (location, time of year, tangent height, HNO 3 levels) re- 

oves most of the systematic features from the residual spectrum, 

ncluding the contribution from background sulfate aerosols. This 

eaves the aerosol(s) of interest as the primary contributor(s) to 

he calibrated residual spectrum, which simplifies the analysis. 

. Methods: spectral simulations 

The simulated transmission spectra were calculated using the 

eer-Lambert equation 

= Aexp ( −σext N� ) = Aexp ( −α� ) (1) 

n which � (cm) is the path length, α (cm 

−1 ) is the extinction 

oefficient, N is the particle concentration (particles/cm 

3 ), σ ext 

cm 

2 /particle) is the extinction cross section. The absorption co- 

fficient was calculated with either T-matrix [15] or Mie scat- 

ering [16] codes and A is a baseline parameter fitted to im- 

rove the agreement with ACE spectra. The T-matrix method solves 

axwell’s equations for light scattering by a randomly oriented 

istribution of axially symmetric particles (spheroids) with an ax- 

al ratio R ( R = 1 for a sphere, R > 1 for an oblate ellipsoid and

 < 1 for a prolate ellipsoid). The fitting results do not depend on 

hether an oblate or prolate model is chosen so R > 1 was used 

or solid particles. The Mie scattering code from Oxford University 

as used for spherical sulfate aerosols [16] . 

The extinction cross section σ ext includes both absorption and 

cattering, and depends on wavenumber, particle size distribution 

nd optical constants of the material at a particular temperature. 

n most cases, the temperatures were fixed to the values from ACE- 

TS version 4.1/4.2 retrievals that are based mainly on the relative 

ntensity of CO 2 lines [2] . A lognormal particle size distribution 

as used ( Eq. (2) ) as defined by the particle density N , median

adius r m 

and width S (S is the distribution standard deviation σ
n ln(r) space, σ = ln( S )) [16] . 

 ( r ) = 

N √ 

2 π

1 

ln ( S ) 

1 

r 
exp 

[
− ( ln r − ln r m 

) 
2 

2ln 

2 ( S ) 

]
(2) 

Note that in some cases (e.g., PMCs) the distribution used had 

ero width ( S = 1) and a single r m 

value. 

The input to the T-matrix and Mie scattering codes are suit- 

ble optical constants at a temperature as close as possible to the 
2 
bserved ACE temperature. Typically the path length was fixed to 

00 km and the particle concentration N was determined from the 

t of the observed spectrum with the calculated spectrum. Only 

he particle column density N � (molecules/cm 

2 ) along the atmo- 

pheric limb path to the Sun can be determined from ACE infrared 

pectra. The particle size distribution parameter S for a lognor- 

al distribution cannot be determined from ACE infrared spectra 

o was fixed to various values as noted below. The output from 

he scattering codes is the extinction coefficient α as a function of 

avenumber. 

. Stratospheric smoke particles 

Extreme wildfires can inject smoke particles as well as numer- 

us molecules released by combustion into the stratosphere [7] . 

he most severe wildfires occurred in the Australian “Black Sum- 

er” in December 2019 and January 2020. As a result of climate 

hange, these pyroCb events are becoming more frequent [17] . 

he ACE-FTS recorded infrared spectra (e.g., Fig. 1 ) of stratospheric 

moke from the Australian fires [8] as well and from other pyroCbs 

7] . 

The smoke spectra from different fires are surprisingly similar 

nd show spectral features assignable to C = O carbonyl stretching 

1740 cm 

−1 ), CH stretching (2962 cm 

−1 ) and OH stretching (3225 

m 

−1 ) modes, suggestive of a surface carboxylic acid group [18] . In 

ddition, surface H 2 O is present based on the librational mode at 

00 cm 

−1 and OH stretching mode as shoulder at 3420 cm 

−1 (the 

ending mode is weak and not observed) [19] . These features are 

arked with tick marks in Fig. 1 . Presumably the hydrated soot 

articles are being oxidized by the OH free radical. 

. Polar mesospheric clouds (PMCs) 

Polar mesospheric clouds, called noctilucent clouds by ground- 

ased observers, are found near 83 km altitude at high latitudes 

round the summer solstice (June in the Northern Hemisphere and 

ecember in the southern Hemisphere) when temperatures are the 

owest [20] . PMCs seem to be occurring more frequently and may 

e indicators of climate change [21] . Increasing concentrations of 

O 2 causes the mesosphere to cool and increasing CH 4 introduces 

ore H 2 O into the mesosphere. PMCs are small ice particles, and 

he ACE-FTS has recorded their spectra from 750 to 4200 cm 

−1 

 Fig. 2 ). 

The PMC infrared spectrum ( Fig. 2 ) shows an OH stretching fea- 

ure at 3238 cm 

−1 that can be used to retrieve the temperature 

f the ice particles [ 5 , 22 ]. The weak bending mode at about 1600

m 

−1 is very weak and the librational mode at 850 cm 

−1 is seen at

he lower edge of the spectrum. The spectrum was simulated using 

he ice optical constants of Clapp et al. [23] with the particle size 

 r m 

) fixed to 40 nm [5] and the distribution width, S, set to 1 (i.e.,

ero width). The retrieved temperature of the ice was 132.3(7.8) 

, the axial ratio, R, was 2.0(1.2) and the column density was 

.6(2.0)x10 9 particles/cm 

2 with one standard deviation in paren- 

hesis. The ice temperature retrieval is based on the location of the 

eak position near 3238 cm 

−1 and is substantially lower than the 

ir temperature of 157.7 K at the tangent point. There was a base- 

ine offset between the InSb and MCT detectors [1] so two baseline 

arameters were fitted: for wavenumbers greater than 1810 cm 

−1 , 

 = 0.998(1) and for less than 1810 cm 

−1 A = 1.002(1). 

. Cirrus clouds 

Cirrus clouds occur in the upper troposphere where tempera- 

ures are low enough to produce ice particles [24] . Cirrus clouds 

ccur at all latitudes and are particularly prominent in the tropics. 
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Fig. 1. Stratospheric smoke spectrum observed at a tangent height of 17.6 km from occultation ss88712 (ss is sunset and 88,712 is the orbit number) on 30 January 2020 at 

47.50 °S latitude and 163.16 °E longitude. 

Fig. 2. PMC spectrum observed at a tangent height of 81.6 km from occultation ss85825 on 18 July 2019 at 67.99 °N latitude and 48.95 °E longitude. There is an artifact at 

1810 cm 

−1 where the MCT and InSb detector regions meet. 
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irrus clouds play a significant role in global heat balance. They re- 

ect a significant portion of the incident solar flux back into space 

hich results in net cooling of the Earth’s surface [25] and also 

bsorb infrared radiation emitted from the surface. 

The cirrus cloud transmission spectrum ( Fig. 3 ) shows two 

rominent peaks at 961 cm 

−1 and 3506 cm 

−1 . The simulations in 

ig. 3 were carried out with the ice optical constants of Clapp et al. 

23] . For this simulation, the temperature was fixed to 198.84 K 

rom the v.4.1/4.2 retrieval, and the retrieved parameters were 

 m 

= 7.09 μm, R = 2.20, S = 1.23, A = 0.648 and the column den-

ity N � = 2.88 × 10 5 particles/cm 

2 (all with unrealistically small 

rror bars, not reported). The simulation is not perfect mainly be- 

ause the model is too simple to represent the myriad of different 

hapes that cirrus ice particles have [24] . 

. Sulfate aerosols 

ACE occasionally observes enhanced stratospheric SO 2 from 

arge volcanic eruptions [26] . The corresponding enhancement in 

erosol extinction from these eruptions is seen with the ACE im- 

gers [26] . Analysis of the residual ACE-FTS spectra confirms that 

hese stratospheric aerosols are due to sulfuric acid droplets [9] . 
3 
ulfate aerosols are important for both climate and chemistry [10] . 

hey scatter sunlight to space, generally cooling the Earth’s surface 

27] and absorbing infrared radiation, heating the stratosphere. 

heir properties and composition have been studied, for example, 

y light scattering and mass spectroscopy [28] as well as infrared 

emote sensing [29] . They provide a medium for chemical reactions 

hat, for example, destroy stratospheric ozone [30] . The explosive 

ruption of the Raikoke volcano in Russia’s Kuril Islands in June 

019 provided many spectra of sulfate aerosols (e.g., Fig. 4 ). ACE 

s also able to observe much weaker background sulfate aerosols, 

hich resemble scaled down versions of Fig. 4 . 

For the simulation shown in Fig. 4 , the sulfuric acid optical 

onstants of Lund Myhre et al. [31] were used, with some ex- 

ra data points determined by interpolation and extrapolation [9] . 

n this simulation, the temperature was fixed to 213 K from the 

.4.1/4.2 retrievals and S was set to 1.3. The fitted median radius 

 m 

was 0.23(2) μm, the composition was 75.1(4)% by weight sul- 

uric acid, the column density was 1.6(3)x10 8 particles/cm 

2 and 

 = 1.0 0 05. 

The spectrum ( Fig. 4 ) shows three characteristic bands with in- 

reasing intensity at 908, 1060 and 1194 cm 

−1 , a broader band at 

740 cm 

−1 and a very broad OH stretching band at 2900 cm 

−1 that 
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Fig. 3. Cirrus cloud spectrum observed at a tangent height of 15.5 km from the tropical occultation sr79241 (sr stands for sunrise) on 28 April 2018 at 1.22 °S latitude and 

99.55 °E longitude. 

Fig. 4. Sulfate aerosol spectrum from the Raikoke eruption observed at a tangent height of 22.9 km from the occultation sr86498 on 2 September 2019 at 26.69 °N latitude 

and 47.97 °W longitude. 
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xtends beyond 3500 cm 

−1 [31] . These features have been marked 

ith tick marks in Fig. 4 . 

. Volcanic ash 

In addition to SO 2 and sulfate aerosols, volcanic eruptions emit 

opious amounts of volcanic ash [ 32 , 33 ]. Volcanic ash poses a sig-

ificant hazard to aviation and to human health. The ACE satellite, 

owever, rarely detects volcanic ash because it settles out of the 

tmosphere relatively quickly compared to sulfate aerosols. ACE 

magers and ACE-FTS measured the ash ( Fig. 5 ) from the Puyehue- 

ordón Caulle volcano (latitude 40.6 °S, longitude 72.1 °W) in Chile 

hat erupted 4 June 2011. 

The simulation in Fig. 5 is based on considerable trial and er- 

or using the T-matrix code [15] with the optical constants of Reed 

t al. [32] . Ultimately, a bimodal lognormal distribution was used 

ith r m 

= 0.08 μm for the fine mode and r m 

= 0.5 μm for the

oarse mode with S = 2 and R = 1.2. The spectrum ( Fig. 5 ) shows

 single strong absorption band at 1070 cm 

−1 due to the character- 

stic Si-O stretching vibration of volcanic ash. The long extinction 

ail to higher wavenumbers is caused by scattering. 
4 
. Polar stratospheric clouds 

Polar stratospheric clouds are responsible for polar ozone de- 

letion. In 1974, Molina and Rowland [34] discovered that chlo- 

ofluorocarbons (CFCs) are photodissociated in the stratosphere to 

elease Cl atoms that can destroy ozone. Stratospheric ozone ab- 

orbs ultraviolet radiation that causes skin cancer and damages 

cosystems. The stratospheric chlorine released from CFCs mostly 

nds up in reservoir compounds such as HCl and ClONO 2 that do 

ot destroy ozone [35] . However, condensed phase PSCs catalyze 

he reaction of HCl with ClONO 2 to form Cl 2 which is dissociated 

y sunlight to make destructive Cl atoms. PSCs are therefore re- 

ponsible for the Antarctic ozone hole and Arctic ozone declines 

hat occur in the springtime. 

PSCs begin to form when the stratospheric temperature drops 

o about 195 K: nitric acid forms solid nitric acid trihydrate (NAT, 

NO 3 ·3H 2 O), and a supercooled ternary solution (STS) of nitric 

cid and sulfuric acid in water also forms [36] . At about 188 K, wa-

er vapor freezes to form ice. These three types of PSCs are called 

ype Ia (NAT), Type Ib (STS) and Type II (ice) in the older litera- 

ure, although the modern terminology categorizes to PSCs by their 
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Fig. 5. Volcanic ash spectrum of the Puyehue-Cordón Caulle volcano observed at a tangent height of 13.8 km from the occultation ss42121 on 9 June 2011 at 45.73 °S latitude 

and 46.00 °E longitude. 

Fig. 6. NAT PSC spectrum observed in Antarctica at a tangent height of 23.7 km from occultation sr86203 on 13 August 2019 at 67.17 °S latitude and 29.76 °W longitude. 

Fig. 7. STS PSC spectrum observed in the Arctic at a tangent height of 14.0 km from occultation ss89431 on 19 March 2020 at 75.83 °N latitude and 94.72 °W longitude. 
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omposition (i.e., NAT, STS and ice). This simple picture is mislead- 

ng because PSCs are often mixtures of different types and phases. 

evertheless, relatively pure examples of each type are present in 

he stratosphere, and we provide characteristic infrared spectra. 

0. Polar stratospheric clouds: Nitric acid trihydrate 

Fig. 6 shows a typical NAT spectrum recorded in the Antarc- 

ic polar vortex, and a simulation using the optical constants of 

oon et al. [37] for β-NAT at 196 K. The retrieved values for the

imulation were r m 

= 0.94(3) μm, R = 2.0(2), N � = 4.7(4)x10 6 

articles/cm 

2 and A = 0.960(2). NAT has a characteristic nitrate 
5 
ands at 821 cm 

−1 , at 1350 cm 

−1 , a weaker feature at 1830 cm 

−1 

nd a characteristic OH stretching doublet at 3204 and 3346 cm 

−1 . 

1. Polar stratospheric clouds: Supercooled ternary solutions 

Fig. 7 shows an STS spectrum recorded in the Arctic, and a sim- 

lation using the optical constants of Lund Myhre et al. [38] for 

itric acid, sulfuric acid and water mixtures. STS retrievals are dif- 

cult because the available optical constants do not match the at- 

ospheric conditions. Typical STSs have low concentrations of sul- 

uric acid and their optical constants at low temperatures are often 

ot available. 
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Fig. 8. Ice PSC spectrum observed in Antarctica at a tangent height of 21.5 km from occultation ss32454 on 22 August 2009 at 71.96 °S latitude and 65.57 °W longitude. 
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[

For the STS PSC in Fig. 7 , the retrieved concentrations of ni- 

ric acid and sulfuric acid are 13(5)% and 26(4)%, respectively. The 

ulfuric acid concentration is somewhat enhanced by the Raikoke 

olcanic eruption. The optical constants are for a temperature of 

43 K, although the retrieved v.4.1/4.2 atmospheric temperature is 

95 K. The parameter values for the simulation were r m 

= 0.47(7) 

m, N � = 1.0(1) × 10 8 particles/cm 

2 and A = 0.975(3), with R and S

xed to 1. STSs ( Fig. 7 ) have characteristic nitric acid bands at 1420

m 

−1 (actually part of a doublet as shown in the simulation) and 

720 cm 

−1 , a sulfuric acid band at 1120 cm 

−1 and a strong broad

H stretching band at 3300 cm 

−1 [38] . 

2. Polar stratospheric clouds: Ice 

An infrared spectrum of PSC ice in the Antarctic polar vortex is 

resented in Fig. 8 . The simulation in orange ( Fig. 8 ) uses the op-

ical constants of Clapp et al. [23] with a temperature of 183 K 

rom the ACE-FTS retrievals. The parameter values for the sim- 

lation were r m 

= 2.22(6) μm, N � = 1.05(11)x10 7 particles/cm 

2 , 

 = 0.66(3) and R = 4.97(9), with S fixed to 1. PSC ice has two

haracteristic upward features at 10 0 0 cm 

−1 and 3550 cm 

−1 and a 

lope between them. These two features are similar to those found 

n cirrus clouds which are also ice ( Fig. 3 ). Indeed, some PSC ice

pectra have spectra very similar to cirrus clouds. 

3. Conclusions 

The “residual” spectra from the ACE-FTS provide a unique set 

f measurements of clouds and aerosols. These infrared spectra 

an be used to reliably speciate the particles at a glance, using 

he sample spectra provided in this paper. In many cases, par- 

icles can be characterized in detail; that is, particle properties 

uch as composition, particle size and particle shape can be deter- 

ined using calculated extinction with T-matrix and Mie scatter- 

ng codes. The infrared spectral region provides characteristic ab- 

orption features that provide quantitative information on particle 

omposition. 
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