Publications from 2022

S. Khaykin, et al.
Global perturbation of stratospheric water and aerosol burden by Hunga eruption
Communications Earth & Environment, 3(), 1, 2022; doi: 10.1038/s43247-022-00652-x
URL, PDF BibTex

M. J. Lecours, et al.
Atlas of ACE spectra of clouds and aerosols
Journal of Quantitative Spectroscopy and Radiative Transfer, 292(), 108361, 2022; doi: 10.1016/j.jqsrt.2022.108361
URL, PDF BibTex

Pastorek, et al.
Time-resolved fourier transform infrared emission spectroscopy of NH radical in the X3Σ− ground state
Journal of Quantitative Spectroscopy and Radiative Transfer, 291(), -, 2022; doi: 10.1016/j.jqsrt.2022.108332
URL, PDF BibTex

D. Minganti, et al.
Evaluation of the N2O Rate of Change to Understand the Stratospheric Brewer-Dobson Circulation in a Chemistry-Climate Model
Journal of Geophysical Research: Atmospheres, 127(), , 2022; doi: 10.1029/2021jd036390
URL, PDF BibTex

P. S. Jeffery, et al.
Water vapour and ozone in the upper troposphere-lower stratosphere: global climatologies from three Canadian limb-viewing instruments
Atmospheric Chemistry and Physics, 22(), 14709-14734, 2022; doi: 10.5194/acp-22-14709-2022
URL, PDF BibTex

X. Zeng, et al.
Retrieval of atmospheric CFC-11 and CFC-12 from high-resolution FTIR observations at Hefei and comparisons with other independent datasets
Atmospheric Measurement Techniques, 15(), 6739-6754, 2022; doi: 10.5194/amt-15-6739-2022
URL, PDF BibTex

R. J. Salawitch and L. A. McBride
Australian wildfires depleted the ozone layer
Science, 378(), 829-830, 2022; doi: 10.1126/science.add2056
URL, PDF BibTex

K. Dube, et al.
An improved OSIRIS NO2 profile retrieval in the upper troposphere textendash lower stratosphere and intercomparison with ACE-FTS and SAGE III/ISS
Atmospheric Measurement Techniques, 15(), 6163-6180, 2022; doi: 10.5194/amt-15-6163-2022
URL, PDF BibTex

S. A. Strode, et al.
SAGE III/ISS ozone and NO2 validation using diurnal scaling factors
, 15(), 6145-6161, 2022; doi: 10.5194/amt-15-6145-2022
URL, PDF BibTex

G. L. Manney, et al.
Signatures of Anomalous Transport in the 2019/2020 Arctic Stratospheric Polar Vortex
Journal of Geophysical Research: Atmospheres, 127(), , 2022; doi: 10.1029/2022jd037407
URL, PDF BibTex

J. T. Emmert, et al.
NRLMSIS 2.1: An Empirical Model of Nitric Oxide Incorporated Into MSIS
Journal of Geophysical Research: Space Physics, 127(), , 2022; doi: 10.1029/2022ja030896
URL, PDF BibTex

C. D. Boone, et al.
Stratospheric Aerosol Composition Observed by the Atmospheric Chemistry Experiment Following the 2019 Raikoke Eruption
Journal of Geophysical Research: Atmospheres, 127(), , 2022; doi: 10.1029/2022jd036600
URL, PDF BibTex

K. Dube, et al.
Tropopause-Level NOx in the Asian Summer Monsoon
Geophysical Research Letters, 49(), , 2022; doi: 10.1029/2022gl099848
URL, PDF BibTex

Fedorova, et al.
Climatology of the CO Vertical Distribution on Mars Based on ACS TGO Measurements
Journal of Geophysical Research: Planets, 127(), -, 2022; doi: 10.1029/2022JE007195
URL, PDF BibTex

Cruz Mermy, et al.
Calibration of NOMAD on ExoMars Trace Gas Orbiter: Part 3 - LNO validation and instrument stability
Planetary and Space Science, 218(), -, 2022; doi: 10.1016/j.pss.2021.105399
URL, PDF BibTex

E. M. Bednarz, et al.
Atmospheric impacts of chlorinated very short-lived substances over the recent past - Part 1: Stratospheric chlorine budget and the role of transport
Atmospheric Chemistry and Physics, 22(), 10657-10676, 2022; doi: 10.5194/acp-22-10657-2022
URL, PDF BibTex

A. A. Nikitenko, et al.
Comparison of Stratospheric CO2 Measurements by Ground- and Satellite-Based Methods
Atmospheric and Oceanic Optics, 35(), 341-344, 2022; doi: 10.1134/s1024856022040145
URL, PDF BibTex

S. E. Strahan, et al.
Unexpected Repartitioning of Stratospheric Inorganic Chlorine After the 2020 Australian Wildfires
Geophysical Research Letters, 49(), , 2022; doi: 10.1029/2022gl098290
URL, PDF BibTex

D. Doshi, et al.
Stratospheric clouds do not impede JWST transit spectroscopy for exoplanets with Earth-like atmospheres
Monthly Notices of the Royal Astronomical Society, 515(), 1982-1992, 2022; doi: 10.1093/mnras/stac1869
URL, PDF BibTex

S. A. Raj, et al.
Defining the upper boundary of the Asian Tropopause Aerosol Layer ATAL using the static stability
Atmospheric Pollution Research, 13(), 101451, 2022; doi: 10.1016/j.apr.2022.101451
URL, PDF BibTex

R. C. Peterson and R. L. Kurucz
New Fe i Level Energies and Line Identifications from Stellar Spectra. {III}. Initial Results from UV, Optical, and Infrared Spectra
The Astrophysical Journal Supplement Series, 260(), 28, 2022; doi: 10.3847/1538-4365/ac596b
URL, PDF BibTex

K. Sun, et al.
An optimal estimation-based retrieval of upper atmospheric oxygen airglow and temperature from SCIAMACHY limb observations
Atmospheric Measurement Techniques, 15(), 3721-3745, 2022; doi: 10.5194/amt-15-3721-2022
URL, PDF BibTex

C. H. Whaley, et al.
Model evaluation of short-lived climate forcers for the Arctic Monitoring and Assessment Programme: a multi-species, multi-model study
Atmospheric Chemistry and Physics, 22(), 5775-5828, 2022; doi: 10.5194/acp-22-5775-2022
URL, PDF BibTex

Zhao, et al.
Advances of ozone satellite remote sensing in 60 years
National Remote Sensing Bulletin, 26(), 817-833, 2022; doi: 10.11834/jrs.20221632
URL, PDF BibTex

K. Knowland, et al.
NASA GEOS Composition Forecast Modeling System GEOS-CF v1.0: Stratospheric Composition
Journal of Advances in Modeling Earth Systems, 14(), , 2022; doi: https://doi.org/10.1029/2021MS002852
URL, PDF BibTex

L. Froidevaux, et al.
Upper stratospheric ClO and HOCl trends (2005-2020): Aura Microwave Limb Sounder and model results
Atmospheric Chemistry and Physics, 22(), 4779-4799, 2022; doi: 10.5194/acp-22-4779-2022
URL, PDF BibTex

P. Bernath, et al.
Wildfire smoke destroys stratospheric ozone
Science, 375(), 1292-1295, 2022; doi: 10.1126/science.abm5611
URL, PDF BibTex

P. E. Sheese, et al.
Assessment of the quality of {ACE}-{FTS} stratospheric ozone data
Atmospheric Measurement Techniques, 15(), 1233-1249, 2022; doi: 10.5194/amt-15-1233-2022
URL, PDF BibTex

S. Solomon, et al.
On the stratospheric chemistry of midlatitude wildfire smoke
Proceedings of the National Academy of Sciences, 119(), , 2022; doi: 10.1073/pnas.2117325119
URL, PDF BibTex

Wells, et al.
Next‐Generation Isoprene Measurements From Space: Detecting Daily Variability at High Resolution
Journal of Geophysical Research: Atmospheres, 127(), -, 2022; doi: 10.1029/2021JD036181
URL, PDF BibTex

M. L. Santee, et al.
Prolonged and Pervasive Perturbations in the Composition of the Southern Hemisphere Midlatitude Lower Stratosphere From the Australian New Year's Fires
Geophysical Research Letters, 49(), , 2022; doi: 10.1029/2021gl096270
URL, PDF BibTex

Braude, et al.
No detection of SO2
Astronomy & Astrophysics, 658(), -, 2022; doi: 10.1051/0004-6361/202142390
URL, PDF BibTex

Fan, et al.
A data- and model-driven strategy for the evaluation of the experimental transition lines: Theoretical prediction for the ground state of 12C16O
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 264(), -, 2022; doi: 10.1016/j.saa.2021.120278
URL, PDF BibTex

Peralta, et al.
Modeling the Mg I from the NUV to MIR: I. The solar case
Astronomy & Astrophysics, 657(), -, 2022; doi: 10.1051/0004-6361/202141973
URL, PDF BibTex

Chen, et al.
An Introduction to the Chinese High-Resolution Earth Observation System: Gaofen-1~7 Civilian Satellites
Journal of Remote Sensing, 2022(), -, 2022; doi: 10.34133/2022/9769536
URL, PDF BibTex